
uIP 0.9 Reference Manual

Generated by Doxygen 1.3.3

Tue Oct 7 15:51:00 2003

Contents

1 The uIP TCP/IP stack 1

1.1 uIP introduction. 1

1.2 TCP/IP communication. 2

1.3 Memory management. 2

1.4 Application program interface (API). 3

1.5 uIP device drivers. 6

1.6 Architecture specific functions. 6

1.7 Examples . 7

2 uIP 0.9 Module Index 15

2.1 uIP 0.9 Modules. .15

3 uIP 0.9 Data Structure Index 17

3.1 uIP 0.9 Data Structures. 17

4 uIP 0.9 File Index 19

4.1 uIP 0.9 File List. .19

5 uIP 0.9 Module Documentation 21

5.1 The uIP TCP/IP stack. 21

5.2 Example applications. 25

5.3 uIP configuration functions. 28

5.4 uIP initialization functions . 30

5.5 uIP device driver functions. 31

5.6 uIP application functions. 35

5.7 uIP conversion functions. 41

5.8 Architecture specific uIP functions. 43

5.9 uIP Address Resolution Protocol. 45

5.10 Serial Line IP (SLIP) protocol. 47

5.11 Configuration options for uIP. 49

ii CONTENTS

5.12 uIP type definitions. 50

5.13 Static configuration options. 51

5.14 IP configuration options. 54

5.15 UDP configuration options. 55

5.16 TCP configuration options. 56

5.17 ARP configuration options. 58

5.18 General configuration options. 59

5.19 CPU architecture configuration. 61

5.20 Appication specific configurations. 62

5.21 Web client. .63

5.22 SMTP E-mail sender. 67

5.23 Telnet server. .69

5.24 Web server .72

5.25 uIP hostname resolver functions. 74

6 uIP 0.9 Data Structure Documentation 77

6.1 fs file Struct Reference. 77

6.2 telnetdstate Struct Reference. 78

6.3 uip conn Struct Reference. 79

6.4 uip eth addr Struct Reference. 81

6.5 uip eth hdr Struct Reference. 82

6.6 uip stats Struct Reference. 83

6.7 uip udp conn Struct Reference. 86

7 uIP 0.9 File Documentation 87

7.1 apps/httpd/cgi.c File Reference. 87

7.2 apps/httpd/cgi.h File Reference. 89

7.3 apps/httpd/fs.c File Reference. 90

7.4 apps/httpd/fs.h File Reference. 91

7.5 apps/httpd/httpd.c File Reference. 92

7.6 apps/httpd/httpd.h File Reference. 93

7.7 apps/resolv/resolv.c File Reference. 94

7.8 apps/resolv/resolv.h File Reference. 95

7.9 apps/smtp/smtp.c File Reference. 97

7.10 apps/smtp/smtp.h File Reference. 98

7.11 apps/telnetd/memb.c File Reference. .100

7.12 apps/telnetd/memb.h File Reference. .102

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

CONTENTS iii

7.13 apps/telnetd/telnetd-shell.c File Reference. .103

7.14 apps/telnetd/telnetd.c File Reference. .104

7.15 apps/telnetd/telnetd.h File Reference. .105

7.16 apps/webclient/webclient.c File Reference. .107

7.17 apps/webclient/webclient.h File Reference. .109

7.18 uip/slipdev.c File Reference. .111

7.19 uip/slipdev.h File Reference. .112

7.20 uip/uip.c File Reference. .113

7.21 uip/uip.h File Reference. .115

7.22 uip/uiparch.h File Reference. .120

7.23 uip/uiparp.c File Reference. .121

7.24 uip/uiparp.h File Reference. .122

7.25 unix/uipopt.h File Reference. .124

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

Chapter 1

The uIP TCP/IP stack

Author:
Adam Dunkels<adam@dunkels.com >

The uIP TCP/IP stack is intended to make it possible to communicate using the TCP/IP protocol suite even
on small 8-bit micro-controllers. Despite being small and simple, uIP do not require their peers to have
complex, full-size stacks, but can communicate with peers running a similarly light-weight stack. The code
size is on the order of a few kilobytes and RAM usage can be configured to be as low as a few hundred
bytes.

1.1 uIP introduction

With the success of the Internet, the TCP/IP protocol suite has become a global standard for communica-
tion. TCP/IP is the underlying protocol used for web page transfers, e-mail transmissions, file transfers, and
peer-to-peer networking over the Internet. For embedded systems, being able to run native TCP/IP makes
it possible to connect the system directly to an intranet or even the global Internet. Embedded devices with
full TCP/IP support will be first-class network citizens, thus being able to fully communicate with other
hosts in the network.

Traditional TCP/IP implementations have required far too much resources both in terms of code size and
memory usage to be useful in small 8 or 16-bit systems. Code size of a few hundred kilobytes and RAM
requirements of several hundreds of kilobytes have made it impossible to fit the full TCP/IP stack into
systems with a few tens of kilobytes of RAM and room for less than 100 kilobytes of code.

The uIP implementation is designed to have only the absolute minimal set of features needed for a full
TCP/IP stack. It can only handle a single network interface and contains only a rudimentary UDP imple-
mentation, but focuses on the IP, ICMP and TCP protocols. uIP is written in the C programming language.

Many other TCP/IP implementations for small systems assume that the embedded device always will com-
municate with a full-scale TCP/IP implementation running on a workstation-class machine. Under this
assumption, it is possible to remove certain TCP/IP mechanisms that are very rarely used in such situa-
tions. Many of those mechanisms are essential, however, if the embedded device is to communicate with
another equally limited device, e.g., when running distributed peer-to-peer services and protocols. uIP is
designed to be RFC compliant in order to let the embedded devices to act as first-class network citizens.
The uIP TCP/IP implementation that is not tailored for any specific application.

mailto:adam@dunkels.com

2 The uIP TCP/IP stack

1.2 TCP/IP communication

The full TCP/IP suite consists of numerous protocols, ranging from low level protocols such as ARP which
translates IP addresses to MAC addresses, to application level protocols such as SMTP that is used to
transfer e-mail. The uIP is mostly concerned with the TCP and IP protocols and upper layer protocols will
be referred to as ”the application”. Lower layer protocols are often implemented in hardware or firmware
and will be referred to as ”the network device” that are controlled by the network device driver.

TCP provides a reliable byte stream to the upper layer protocols. It breaks the byte stream into appropriately
sized segments and each segment is sent in its own IP packet. The IP packets are sent out on the network
by the network device driver. If the destination is not on the physically connected network, the IP packet
is forwarded onto another network by a router that is situated between the two networks. If the maximum
packet size of the other network is smaller than the size of the IP packet, the packet is fragmented into
smaller packets by the router. If possible, the size of the TCP segments are chosen so that fragmentation
is minimized. The final recipient of the packet will have to reassemble any fragmented IP packets before
they can be passed to higher layers.

The formal requirements for the protocols in the TCP/IP stack is specified in a number of RFC documents
published by the Internet Engineering Task Force, IETF. Each of the protocols in the stack is defined in one
more RFC documents and RFC1122 collects all requirements and updates the previous RFCs.

The RFC1122 requirements can be divided into two categories; those that deal with the host to host com-
munication and those that deal with communication between the application and the networking stack.
An example of the first kind is ”A TCP MUST be able to receive a TCP option in any segment” and an
example of the second kind is ”There MUST be a mechanism for reporting soft TCP error conditions to
the application.” A TCP/IP implementation that violates requirements of the first kind may not be able
to communicate with other TCP/IP implementations and may even lead to network failures. Violation of
the second kind of requirements will only affect the communication within the system and will not affect
host-to-host communication.

In uIP, all RFC requirements that affect host-to-host communication are implemented. However, in order
to reduce code size, we have removed certain mechanisms in the interface between the application and
the stack, such as the soft error reporting mechanism and dynamically configurable type-of-service bits for
TCP connections. Since there are only very few applications that make use of those features they can be
removed without loss of generality.

1.3 Memory management

In the architectures for which uIP is intended, RAM is the most scarce resource. With only a few kilobytes
of RAM available for the TCP/IP stack to use, mechanisms used in traditional TCP/IP cannot be directly
applied.

The uIP stack does not use explicit dynamic memory allocation. Instead, it uses a single global buffer
for holding packets and has a fixed table for holding connection state. The global packet buffer is large
enough to contain one packet of maximum size. When a packet arrives from the network, the device driver
places it in the global buffer and calls the TCP/IP stack. If the packet contains data, the TCP/IP stack
will notify the corresponding application. Because the data in the buffer will be overwritten by the next
incoming packet, the application will either have to act immediately on the data or copy the data into a
secondary buffer for later processing. The packet buffer will not be overwritten by new packets before the
application has processed the data. Packets that arrive when the application is processing the data must be
queued, either by the network device or by the device driver. Most single-chip Ethernet controllers have
on-chip buffers that are large enough to contain at least 4 maximum sized Ethernet frames. Devices that
are handled by the processor, such as RS-232 ports, can copy incoming bytes to a separate buffer during
application processing. If the buffers are full, the incoming packet is dropped. This will cause performance

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

1.4 Application program interface (API) 3

degradation, but only when multiple connections are running in parallel. This is because uIP advertises
a very small receiver window, which means that only a single TCP segment will be in the network per
connection.

In uIP, the same global packet buffer that is used for incoming packets is also used for the TCP/IP headers
of outgoing data. If the application sends dynamic data, it may use the parts of the global packet buffer that
are not used for headers as a temporary storage buffer. To send the data, the application passes a pointer to
the data as well as the length of the data to the stack. The TCP/IP headers are written into the global buffer
and once the headers have been produced, the device driver sends the headers and the application data out
on the network. The data is not queued for retransmissions. Instead, the application will have to reproduce
the data if a retransmission is necessary.

The total amount of memory usage for uIP depends heavily on the applications of the particular device in
which the implementations are to be run. The memory configuration determines both the amount of traffic
the system should be able to handle and the maximum amount of simultaneous connections. A device that
will be sending large e-mails while at the same time running a web server with highly dynamic web pages
and multiple simultaneous clients, will require more RAM than a simple Telnet server. It is possible to run
the uIP implementation with as little as 200 bytes of RAM, but such a configuration will provide extremely
low throughput and will only allow a small number of simultaneous connections.

1.4 Application program interface (API)

The Application Program Interface (API) defines the way the application program interacts with the TCP/IP
stack. The most commonly used API for TCP/IP is the BSD socket API which is used in most Unix systems
and has heavily influenced the Microsoft Windows WinSock API. Because the socket API uses stop-and-
wait semantics, it requires support from an underlying multitasking operating system. Since the overhead
of task management, context switching and allocation of stack space for the tasks might be too high in the
intended uIP target architectures, the BSD socket interface is not suitable for our purposes.

Instead, uIP uses an event driven interface where the application is invoked in response to certain events.
An application running on top of uIP is implemented as a C function that is called by uIP in response to
certain events. uIP calls the application when data is received, when data has been successfully delivered to
the other end of the connection, when a new connection has been set up, or when data has to be retransmit-
ted. The application is also periodically polled for new data. The application program provides only one
callback function; it is up to the application to deal with mapping different network services to different
ports and connections. Because the application is able to act on incoming data and connection requests as
soon as the TCP/IP stack receives the packet, low response times can be achieved even in low-end systems.

uIP is different from other TCP/IP stacks in that it requires help from the application when doing re-
transmissions. Other TCP/IP stacks buffer the transmitted data in memory until the data is known to be
successfully delivered to the remote end of the connection. If the data needs to be retransmitted, the stack
takes care of the retransmission without notifying the application. With this approach, the data has to be
buffered in memory while waiting for an acknowledgment even if the application might be able to quickly
regenerate the data if a retransmission has to be made.

In order to reduce memory usage, uIP utilizes the fact that the application may be able to regenerate sent
data and lets the application take part in retransmissions. uIP does not keep track of packet contents af-
ter they have been sent by the device driver, and uIP requires that the application takes an active part in
performing the retransmission. When uIP decides that a segment should be retransmitted, it calls the appli-
cation with a flag set indicating that a retransmission is required. The application checks the retransmission
flag and produces the same data that was previously sent. From the application’s standpoint, performing
a retransmission is not different from how the data originally was sent. Therefore the application can be
written in such a way that the same code is used both for sending data and retransmitting data. Also, it is
important to note that even though the actual retransmission operation is carried out by the application, it
is the responsibility of the stack to know when the retransmission should be made. Thus the complexity of

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

4 The uIP TCP/IP stack

the application does not necessarily increase because it takes an active part in doing retransmissions.

1.4.1 Application events

The application must be implemented as a C function,UIP APPCALL(), that uIP calls whenever an event
occurs. Each event has a corresponding test function that is used to distinguish between different events.
The functions are implemented as C macros that will evaluate to either zero or non-zero. Note that certain
events can happen in conjunction with each other (i.e., new data can arrive at the same time as data is
acknowledged).

1.4.2 The connection pointer

When the application is called by uIP, the global variableuip connis set to point to theuip connstructure
for the connection that currently is handled, and is called the ”current connection”. The fields in theuip -
connstructure for the current connection can be used, e.g., to distinguish between different services, or to
check to which IP address the connection is connected. One typical use would be to inspect the uipconn-
>lport (the local TCP port number) to decide which service the connection should provide. For instance,
an application might decide to act as an HTTP server if the value of uipconn->lport is equal to 80 and act
as a TELNET server if the value is 23.

1.4.3 Receiving data

If the uIP test functionuip newdata()is non-zero, the remote host of the connection has sent new data. The
uip appdata pointer point to the actual data. The size of the data is obtained through the uIP functionuip -
datalen(). The data is not buffered by uIP, but will be overwritten after the application function returns, and
the application will therefor have to either act directly on the incoming data, or by itself copy the incoming
data into a buffer for later processing.

1.4.4 Sending data

When sending data, uIP adjusts the length of the data sent by the application according to the available
buffer space and the current TCP window advertised by the receiver. The amount of buffer space is dictated
by the memory configuration. It is therefore possible that all data sent from the application does not arrive
at the receiver, and the application may use theuip mss()function to see how much data that actually will
be sent by the stack.

The application sends data by using the uIP functionuip send(). Theuip send()function takes two argu-
ments; a pointer to the data to be sent and the length of the data. If the application needs RAM space for
producing the actual data that should be sent, the packet buffer (pointed to by the uipappdata pointer) can
be used for this purpose.

The application can send only one chunk of data at a time on a connection and it is not possible to call
uip send()more than once per application invocation; only the data from the last call will be sent.

1.4.5 Retransmitting data

Retransmissions are driven by the periodic TCP timer. Every time the periodic timer is invoked, the re-
transmission timer for each connection is decremented. If the timer reaches zero, a retransmission should
be made. As uIP does not keep track of packet contents after they have been sent by the device driver, uIP
requires that the application takes an active part in performing the retransmission. When uIP decides that a

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

1.4 Application program interface (API) 5

segment should be retransmitted, the application function is called with theuip rexmit()flag set, indicating
that a retransmission is required.

The application must check theuip rexmit()flag and produce the same data that was previously sent. From
the application’s standpoint, performing a retransmission is not different from how the data originally was
sent. Therefor, the application can be written in such a way that the same code is used both for sending data
and retransmitting data. Also, it is important to note that even though the actual retransmission operation is
carried out by the application, it is the responsibility of the stack to know when the retransmission should
be made. Thus the complexity of the application does not necessarily increase because it takes an active
part in doing retransmissions.

1.4.6 Closing connections

The application closes the current connection by calling theuip close()during an application call. This
will cause the connection to be cleanly closed. In order to indicate a fatal error, the application might want
to abort the connection and does so by calling theuip abort()function.

If the connection has been closed by the remote end, the test functionuip closed()is true. The application
may then do any necessary cleanups.

1.4.7 Reporting errors

There are two fatal errors that can happen to a connection, either that the connection was aborted by the
remote host, or that the connection retransmitted the last data too many times and has been aborted. uIP
reports this by calling the application function. The application can use the two test functionsuip aborted()
anduip timedout()to test for those error conditions.

1.4.8 Polling

When a connection is idle, uIP polls the application every time the periodic timer fires. The application
uses the test functionuip poll() to check if it is being polled by uIP.

The polling event has two purposes. The first is to let the application periodically know that a connection is
idle, which allows the application to close connections that have been idle for too long. The other purpose
is to let the application send new data that has been produced. The application can only send data when
invoked by uIP, and therefore the poll event is the only way to send data on an otherwise idle connection.

1.4.9 Listening ports

uIP maintains a list of listening TCP ports. A new port is opened for listening with theuip listen()function.
When a connection request arrives on a listening port, uIP creates a new connection and calls the application
function. The test functionuip connected()is true if the application was invoked because a new connection
was created.

The application can check the lport field in theuip connstructure to check to which port the new connection
was connected.

1.4.10 Opening connections

New connections can be opened from within uIP by the functionuip connect(). This function allocates a
new connection and sets a flag in the connection state which will open a TCP connection to the specified IP

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

6 The uIP TCP/IP stack

address and port the next time the connection is polled by uIP. Theuip connect()function returns a pointer
to theuip connstructure for the new connection. If there are no free connection slots, the function returns
NULL.

The functionuip ipaddr()may be used to pack an IP address into the two element 16-bit array used by uIP
to represent IP addresses.

Two examples of usage are shown below. The first example shows how to open a connection to TCP port
8080 of the remote end of the current connection. If there are not enough TCP connection slots to allow
a new connection to be opened, theuip connect()function returns NULL and the current connection is
aborted byuip abort().

void connect_example1_app(void) {
if(uip_connect(uip_conn->ripaddr, HTONS(8080)) == NULL) {

uip_abort();
}

}

The second example shows how to open a new connection to a specific IP address. No error checks are
made in this example.

void connect_example2(void) {
u16_t ipaddr[2];

uip_ipaddr(ipaddr, 192,168,0,1);
uip_connect(ipaddr, HTONS(8080));

}

1.5 uIP device drivers

From the network device driver’s standpoint, uIP consists of two C functions:uip input() and uip -
periodic(). The uip input() function should be called by the device driver when an IP packet has been
received and put into the uipbuf packet buffer. Theuip input() function will process the packet, and when
it returns an outbound packet may have been placed in the same uipbuf packet buffer (indicated by the
uip len variable being non-zero). The device driver should then send out this packet onto the network.

Theuip periodic()function should be invoked periodically once per connection by the device driver, typi-
cally one per second. This function is used by uIP to drive protocol timers and retransmissions, and when
it returns it may have placed an outbound packet in the uipbuf buffer.

1.6 Architecture specific functions

uIP requires a few functions to be implemented specifically for the architecture on which uIP is intended to
run. These functions should be hand-tuned for the particular architecture, but generic C implementations
are given as part of the uIP distribution.

1.6.1 Checksum calculation

The TCP and IP protocols implement a checksum that covers the data and header portions of the TCP and
IP packets. Since the calculation of this checksum is made over all bytes in every packet being sent and
received it is important that the function that calculates the checksum is efficient. Most often, this means
that the checksum calculation must be fine-tuned for the particular architecture on which the uIP stack runs.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

1.7 Examples 7

Because of this, uIP does not implement a generic checksum function, but leaves this to the architecture
specific files which must implement the two functionsuip ipchksum()anduip tcpchksum(). The checksum
calculations in those functions can be written in highly optimized assembler rather than generic C code.

An example C implementation of the checksum function is provided in the uIP distribution.

1.6.2 32-bit arithmetic

The TCP protocol uses 32-bit sequence numbers, and a TCP implementation will have to do a number of
32-bit additions as part of the normal protocol processing. Since 32-bit arithmetic is not natively available
on many of the platforms for which uIP is intended, uIP leaves the 32-bit additions to be implemented by
the architecture specific module and does not make use of any 32-bit arithmetic in the main code base.

The architecture specific code must implement a functionuip add32()which does a 32-bit addition and
stores the result in a global variable uipacc32.

1.7 Examples

This section presents a number of very simple uIP applications. The uIP code distribution contains several
more complex applications.

1.7.1 A very simple application

This first example shows a very simple application. The application listens for incoming connections on
port 1234. When a connection has been established, the application replies to all data sent to it by saying
”ok”

The implementation of this application is shown below. The application is initialized with the function
called example1init() and the uIP callback function is called example1app(). For this application, the
configuration variable UIPAPPCALL should be defined to be example1app().

void example1_init(void) {
uip_listen(HTONS(1234));

}

void example1_app(void) {
if(uip_newdata() || uip_rexmit()) {

uip_send("ok\n", 3);
}

}

The initialization function calls the uIP functionuip listen() to register a listening port. The actual appli-
cation function example1app() uses the test functionsuip newdata()anduip rexmit() to determine why it
was called. If the application was called because the remote end has sent it data, it responds with an ”ok”.
If the application function was called because data was lost in the network and has to be retransmitted, it
also sends an ”ok”. Note that this example actually shows a complete uIP application. It is not required for
an application to deal with all types of events such asuip connected()or uip timedout().

1.7.2 A more advanced application

This second example is slightly more advanced than the previous one, and shows how the application state
field in theuip connstructure is used.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

8 The uIP TCP/IP stack

This application is similar to the first application in that it listens to a port for incoming connections and
responds to data sent to it with a single ”ok”. The big difference is that this application prints out a
welcoming ”Welcome!” message when the connection has been established.

This seemingly small change of operation makes a big difference in how the application is implemented.
The reason for the increase in complexity is that if data should be lost in the network, the application must
know what data to retransmit. If the ”Welcome!” message was lost, the application must retransmit the
welcome and if one of the ”ok” messages is lost, the application must send a new ”ok”.

The application knows that as long as the ”Welcome!” message has not been acknowledged by the remote
host, it might have been dropped in the network. But once the remote host has sent an acknowledgment
back, the application can be sure that the welcome has been received and knows that any lost data must be
an ”ok” message. Thus the application can be in either of two states: either in the WELCOME-SENT state
where the ”Welcome!” has been sent but not acknowledged, or in the WELCOME-ACKED state where the
”Welcome!” has been acknowledged.

When a remote host connects to the application, the application sends the ”Welcome!” message and sets
it’s state to WELCOME-SENT. When the welcome message is acknowledged, the application moves to
the WELCOME-ACKED state. If the application receives any new data from the remote host, it responds
by sending an ”ok” back.

If the application is requested to retransmit the last message, it looks at in which state the application is. If
the application is in the WELCOME-SENT state, it sends a ”Welcome!” message since it knows that the
previous welcome message hasn’t been acknowledged. If the application is in the WELCOME-ACKED
state, it knows that the last message was an ”ok” message and sends such a message.

The implementation of this application is seen below. This configuration settings for the application is
follows after its implementation.

struct example2_state {
enum {WELCOME_SENT, WELCOME_ACKED} state;

};

void example2_init(void) {
uip_listen(HTONS(2345));

}

void example2_app(void) {
struct example2_state *s;

s = (struct example2_state *)uip_conn->appstate;

if(uip_connected()) {
s->state = WELCOME_SENT;
uip_send("Welcome!\n", 9);
return;

}

if(uip_acked() && s->state == WELCOME_SENT) {
s->state = WELCOME_ACKED;

}

if(uip_newdata()) {
uip_send("ok\n", 3);

}

if(uip_rexmit()) {
switch(s->state) {
case WELCOME_SENT:

uip_send("Welcome!\n", 9);
break;

case WELCOME_ACKED:
uip_send("ok\n", 3);
break;

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

1.7 Examples 9

}
}

}

The configuration for the application:

#define UIP_APPCALL example2_app
#define UIP_APPSTATE_SIZE sizeof(struct example2_state)

1.7.3 Differentiating between applications

If the system should run multiple applications, one technique to differentiate between them is to use the
TCP port number of either the remote end or the local end of the connection. The example below shows
how the two examples above can be combined into one application.

void example3_init(void) {
example1_init();
example2_init();

}

void example3_app(void) {
switch(uip_conn->lport) {
case HTONS(1234):

example1_app();
break;

case HTONS(2345):
example2_app();
break;

}
}

1.7.4 Utilizing TCP flow control

This example shows a simple application that connects to a host, sends an HTTP request for a file and
downloads it to a slow device such a disk drive. This shows how to use the flow control functions of uIP.

void example4_init(void) {
u16_t ipaddr[2];
uip_ipaddr(ipaddr, 192,168,0,1);
uip_connect(ipaddr, HTONS(80));

}

void example4_app(void) {
if(uip_connected() || uip_rexmit()) {

uip_send("GET /file HTTP/1.0\r\nServer:192.186.0.1\r\n\r\n",
48);

return;
}

if(uip_newdata()) {
device_enqueue(uip_appdata, uip_datalen());
if(device_queue_full()) {

uip_stop();
}

}

if(uip_poll() && uip_stopped()) {
if(!device_queue_full()) {

uip_restart();
}

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

10 The uIP TCP/IP stack

}
}

When the connection has been established, an HTTP request is sent to the server. Since this is the only
data that is sent, the application knows that if it needs to retransmit any data, it is that request that should
be retransmitted. It is therefore possible to combine these two events as is done in the example.

When the application receives new data from the remote host, it sends this data to the device by using
the function deviceenqueue(). It is important to note that this example assumes that this function copies
the data into its own buffers. The data in the uipappdata buffer will be overwritten by the next incoming
packet.

If the device’s queue is full, the application stops the data from the remote host by calling the uIP function
uip stop(). The application can then be sure that it will not receive any new data untiluip restart()is called.
The application polling event is used to check if the device’s queue is no longer full and if so, the data flow
is restarted withuip restart().

1.7.5 A simple web server

This example shows a very simple file server application that listens to two ports and uses the port number
to determine which file to send. If the files are properly formatted, this simple application can be used as a
web server with static pages. The implementation follows.

struct example5_state {
char *dataptr;
unsigned int dataleft;

};

void example5_init(void) {
uip_listen(HTONS(80));
uip_listen(HTONS(81));

}

void example5_app(void) {
struct example5_state *s;
s = (struct example5_state)uip_conn->appstate;

if(uip_connected()) {
switch(uip_conn->lport) {
case HTONS(80):

s->dataptr = data_port_80;
s->dataleft = datalen_port_80;
break;

case HTONS(81):
s->dataptr = data_port_81;
s->dataleft = datalen_port_81;
break;

}
uip_send(s->dataptr, s->dataleft);
return;

}

if(uip_acked()) {
if(s->dataleft < uip_mss()) {

uip_close();
return;

}
s->dataptr += uip_conn->len;
s->dataleft -= uip_conn->len;
uip_send(s->dataptr, s->dataleft);

}
}

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

1.7 Examples 11

The application state consists of a pointer to the data that should be sent and the size of the data that is left
to send. When a remote host connects to the application, the local port number is used to determine which
file to send. The first chunk of data is sent usinguip send(). uIP makes sure that no more than MSS bytes
of data is actually sent, even though s->dataleft may be larger than the MSS.

The application is driven by incoming acknowledgments. When data has been acknowledged, new data
can be sent. If there is no more data to send, the connection is closed usinguip close().

1.7.6 Structured application program design

When writing larger programs using uIP it is useful to be able to utilize the uIP API in a structured way.
The following example provides a structured design that has showed itself to be useful for writing larger
protocol implementations than the previous examples showed here. The program is divided into an uIP
event handler function that calls seven application handler functions that process new data, act on acknowl-
edged data, send new data, deal with connection establishment or closure events and handle errors. The
functions are callednewdata(), acked(), senddata(), connected(),closed(), aborted(), and timedout(), and
needs to be written specifically for the protocol that is being implemented.

The uIP event handler function is shown below.

void example6_app(void) {
if(uip_aborted()) {

aborted();
}
if(uip_timedout()) {

timedout();
}
if(uip_closed()) {

closed();
}
if(uip_connected()) {

connected();
}
if(uip_acked()) {

acked();
}
if(uip_newdata()) {

newdata();
}
if(uip_rexmit() ||

uip_newdata() ||
uip_acked() ||
uip_connected() ||
uip_poll()) {

senddata();
}

}

The function starts with dealing with any error conditions that might have happened by checking ifuip -
aborted()or uip timedout()are true. If so, the appropriate error function is called. Also, if the connection
has been closed, theclosed()function is called to the it deal with the event.

Next, the function checks if the connection has just been established by checking ifuip connected()is true.
The connected() function is called and is supposed to do whatever needs to be done when the connection
is established, such as intializing the application state for the connection. Since it may be the case that data
should be sent out, thesenddata()function is called to deal with the outgoing data.

The following very simple application serves as an example of how the application handler functions might
look. This application simply waits for any data to arrive on the connection, and responds to the data by
sending out the message ”Hello world!”. To illustrate how to develop an application state machine, this
message is sent in two parts, first the ”Hello” part and then the ”world!” part.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

12 The uIP TCP/IP stack

#define STATE_WAITING 0
#define STATE_HELLO 1
#define STATE_WORLD 2

struct example6_state {
u8_t state;
char *textptr;
int textlen;

};

static void aborted(void) {}
static void timedout(void) {}
static void closed(void) {}

static void connected(void) {
struct example6_state *s = (struct example6_state *)uip_conn->appstate;

s->state = STATE_WAITING;
s->textlen = 0;

}

static void newdata(void) {
struct example6_state *s = (struct example6_state *)uip_conn->appstate;

if(s->state == STATE_WAITING) {
s->state = STATE_HELLO;
s->textptr = "Hello ";
s->textlen = 6;

}
}

static void acked(void) {
struct example6_state *s = (struct example6_state *)uip_conn->appstate;

s->textlen -= uip_conn->len;
s->textptr += uip_conn->len;
if(s->textlen == 0) {

switch(s->state) {
case STATE_HELLO:

s->state = STATE_WORLD;
s->textptr = "world!\n";
s->textlen = 7;
break;

case STATE_WORLD:
uip_close();
break;

}
}

}

static void senddata(void) {
struct example6_state *s = (struct example6_state *)uip_conn->appstate;

if(s->textlen > 0) {
uip_send(s->textptr, s->textlen);

}
}

The application state consists of a ”state” variable, a ”textptr” pointer to a text message and the ”textlen”
length of the text message. The ”state” variable can be either ”STATEWAITING”, meaning that the
application is waiting for data to arrive from the network, ”STATEHELLO”, in which the application is
sending the ”Hello” part of the message, or ”STATEWORLD”, in which the application is sending the
”world!” message.

The application does not handle errors or connection closing events, and therefore the aborted(), timedout()
andclosed()functions are implemented as empty functions.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

1.7 Examples 13

The connected() function will be called when a connection has been established, and in this case sets the
”state” variable to be ”STATEWAITING” and the ”textlen” variable to be zero, indicating that there is no
message to be sent out.

When new data arrives from the network, thenewdata()function will be called by the event handler func-
tion. Thenewdata()function will check if the connection is in the ”STATEWAITING” state, and if so
switches to the ”STATEHELLO” state and registers a 6 byte long ”Hello ” message with the connection.
This message will later be sent out by thesenddata()function.

Theacked()function is called whenever data that previously was sent has been acknowleged by the receiv-
ing host. Thisacked()function first reduces the amount of data that is left to send, by subtracting the length
of the previously sent data (obtained from ”uipconn→ len”) from the ”textlen” variable, and also adjusts
the ”textptr” pointer accordingly. It then checks if the ”textlen” variable now is zero, which indicates that
all data now has been successfully received, and if so changes application state. If the application was in the
”STATE HELLO” state, it switches state to ”STATEWORLD” and sets up a 7 byte ”world!\n” message
to be sent. If the application was in the ”STATEWORLD” state, it closes the connection.

Finally, thesenddata()function takes care of actually sending the data that is to be sent. It is called by
the event handler function when new data has been received, when data has been acknowledged, when
a new connection has been established, when the connection is polled because of inactivity, or when a
retransmission should be made. The purpose of thesenddata()function is to optionally format the data that
is to be sent, and to call theuip send()function to actually send out the data. In this particular example, the
function simply callsuip send()with the appropriate arguments if data is to be sent, after checking if data
should be sent out or not as indicated by the ”textlen” variable.

It is important to note that thesenddata()function never should affect the application state; this should only
be done in theacked()andnewdata()functions.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

14 The uIP TCP/IP stack

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

Chapter 2

uIP 0.9 Module Index

2.1 uIP 0.9 Modules

Here is a list of all modules:

The uIP TCP/IP stack .21

uIP configuration functions .28
uIP initialization functions .30
uIP device driver functions .31
uIP application functions .35
uIP conversion functions .41
uIP Address Resolution Protocol .45
Serial Line IP (SLIP) protocol .47
uIP hostname resolver functions .74
Architecture specific uIP functions .43

Example applications .25

Web client .63
SMTP E-mail sender .67
Telnet server .69
Web server .72

Configuration options for uIP .49

uIP type definitions .50
Static configuration options .51
IP configuration options .54
UDP configuration options .55
TCP configuration options .56
ARP configuration options .58
General configuration options .59
CPU architecture configuration .61
Appication specific configurations .62

16 uIP 0.9 Module Index

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

Chapter 3

uIP 0.9 Data Structure Index

3.1 uIP 0.9 Data Structures

Here are the data structures with brief descriptions:

fs file (An open file in the read-only file system) .77
telnetdstate(A telnet connection structure) .78
uip conn(Representation of a uIP TCP connection) .79
uip eth addr(Representation of a 48-bit Ethernet address) .81
uip eth hdr (The Ethernet header) .82
uip stats(The structure holding the TCP/IP statistics that are gathered if UIPSTATISTICS is set

to 1) .83
uip udp conn(Representation of a uIP UDP connection) .86

18 uIP 0.9 Data Structure Index

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

Chapter 4

uIP 0.9 File Index

4.1 uIP 0.9 File List

Here is a list of all documented files with brief descriptions:

apps/httpd/cgi.c(HTTP server script language C functions file)87
apps/httpd/cgi.h(HTTP script language header file) .89
apps/httpd/fs.c(HTTP server read-only file system code) .90
apps/httpd/fs.h(HTTP server read-only file system header file)91
apps/httpd/httpd.c(HTTP server) .92
apps/httpd/httpd.h(HTTP server header file) .93
apps/resolv/resolv.c(DNS host name to IP address resolver)94
apps/resolv/resolv.h(DNS resolver code header file) .95
apps/smtp/smtp.c(SMTP example implementation) .97
apps/smtp/smtp.h(SMTP header file) .98
apps/telnetd/memb.c(Memory block allocation routines) .100
apps/telnetd/memb.h(Memory block allocation routines) .102
apps/telnetd/telnetd-shell.c(An example telnet server shell)103
apps/telnetd/telnetd.c(Implementation of the Telnet server) .104
apps/telnetd/telnetd.h(Header file for the telnet server) .105
apps/webclient/webclient.c(Implementation of the HTTP client)107
apps/webclient/webclient.h(Header file for the HTTP client)109
uip/slipdev.c(SLIP protocol implementation) .111
uip/slipdev.h(SLIP header file) .112
uip/uip.c(The uIP TCP/IP stack code) .113
uip/uip.h(Header file for the uIP TCP/IP stack) .115
uip/uip arch.h(Declarations of architecture specific functions)120
uip/uip arp.c(Implementation of the ARP Address Resolution Protocol)121
uip/uip arp.h(Macros and definitions for the ARP module) .122
unix/uipopt.h(Configuration options for uIP) .124

20 uIP 0.9 File Index

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

Chapter 5

uIP 0.9 Module Documentation

5.1 The uIP TCP/IP stack

Files

• file uip.c

The uIP TCP/IP stack code.

• file uip.h

Header file for the uIP TCP/IP stack.

Modules

• uIP configuration functions
• uIP initialization functions
• uIP device driver functions
• uIP application functions
• uIP conversion functions
• uIP Address Resolution Protocol
• Serial Line IP (SLIP) protocol
• uIP hostname resolver functions
• Architecture specific uIP functions

Data Structures

• structuip conn

Representation of a uIP TCP connection.

• structuip stats

The structure holding the TCP/IP statistics that are gathered if UIPSTATISTICS is set to 1.

• structuip udp conn

Representation of a uIP UDP connection.

22 uIP 0.9 Module Documentation

Functions

• void uip init (void)

uIP initialization function.

• uip udp conn∗ uip udp new(u16 t ∗ripaddr,u16 t rport)

Set up a new UDP connection.

• void uip unlisten(u16 t port)

Stop listening to the specified port.

• void uip listen(u16 t port)

Start listening to the specified port.

• u16 t htons(u16 t val)

Convert 16-bit quantity from host byte order to network byte order.

Variables

• volatileu8 t ∗ uip appdata

Pointer to the application data in the packet buffer.

• uip statsuip stat

The uIP TCP/IP statistics.

• u8 t uip buf [UIP BUFSIZE+2]

The uIP packet buffer.

• volatileu8 t uip acc32[4]

4-byte array used for the 32-bit sequence number calculations.

5.1.1 Function Documentation

5.1.1.1 u16 t htons (u16 t val)

Convert 16-bit quantity from host byte order to network byte order.

This function is primarily used for converting variables from host byte order to network byte order. For
converting constants to network byte order, use theHTONS()macro instead.

5.1.1.2 void uip init (void)

uIP initialization function.

This function should be called at boot up to initilize the uIP TCP/IP stack.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.1 The uIP TCP/IP stack 23

5.1.1.3 void uip listen (u16 t port)

Start listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversion usingHTONS() or
htons()is necessary.

uip_listen(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

5.1.1.4 structuip udp conn∗ uip udp new (u16 t ∗ ripaddr, u16 t rport)

Set up a new UDP connection.

Parameters:
ripaddr A pointer to a 4-byte structure representing the IP address of the remote host.

rport The remote port number in network byte order.

Returns:
Theuip udp connstructure for the new connection or NULL if no connection could be allocated.

5.1.1.5 void uipunlisten (u16 t port)

Stop listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversion usingHTONS() or
htons()is necessary.

uip_unlisten(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

5.1.2 Variable Documentation

5.1.2.1 volatileu8 t∗ uip appdata

Pointer to the application data in the packet buffer.

This pointer points to the application data when the application is called. If the application wishes to send
data, the application may use this space to write the data into before callinguip send().

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

24 uIP 0.9 Module Documentation

5.1.2.2 u8 t uip buf[UIP BUFSIZE+2]

The uIP packet buffer.

The uipbuf array is used to hold incoming and outgoing packets. The device driver should place incoming
data into this buffer. When sending data, the device driver should read the link level headers and the TCP/IP
headers from this buffer. The size of the link level headers is configured by the UIPLLH LEN define.

Note:
The application data need not be placed in this buffer, so the device driver must read it from the place
pointed to by the uipappdata pointer as illustrated by the following example:

void
devicedriver_send(void)
{

hwsend(&uip_buf[0], UIP_LLH_LEN);
hwsend(&uip_buf[UIP_LLH_LEN], 40);
hwsend(uip_appdata, uip_len - 40 - UIP_LLH_LEN);

}

5.1.2.3 structuip statsuip stat

The uIP TCP/IP statistics.

This is the variable in which the uIP TCP/IP statistics are gathered.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.2 Example applications 25

5.2 Example applications

5.2.1 Detailed Description

The uIP distribution contains a number of example applications that can be either used directory or studied
when learning to develop applications for uIP.

Files

• file memb.c

Memory block allocation routines.

• file memb.h

Memory block allocation routines.

Modules

• Web client

• SMTP E-mail sender

• Telnet server

• Web server

Defines

• #defineMEMB(name, size, num)

Declare a memory block.

Functions

• void membinit (struct membblocks∗m)

Initialize a memory block that was declared withMEMB().

• char∗ memballoc (struct membblocks∗m)

Allocate a memory block from a block of memory declared withMEMB().

• charmembref (struct membblocks∗m, char∗ptr)

Increase the reference count for a memory chunk.

• charmembfree(struct membblocks∗m, char∗ptr)

Deallocate a memory block from a memory block previously declared withMEMB().

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

26 uIP 0.9 Module Documentation

5.2.2 Define Documentation

5.2.2.1 #define MEMB(name, size, num)

Value:

static char memb_mem[(size + 1) * num]; \
static struct memb_blocks name = {size, num, memb_mem}

Declare a memory block.

Parameters:
name The name of the memory block (later used withmembinit(), memballoc()andmembfree()).

size The size of each memory chunk, in bytes.

num The total number of memory chunks in the block.

5.2.3 Function Documentation

5.2.3.1 char∗ memb alloc (struct memb blocks∗ m)

Allocate a memory block from a block of memory declared withMEMB().

Parameters:
m A memory block previosly declared withMEMB().

5.2.3.2 char membfree (struct memb blocks∗ m, char ∗ ptr)

Deallocate a memory block from a memory block previously declared withMEMB().

Parameters:
m m A memory block previosly declared withMEMB().

ptr A pointer to the memory block that is to be deallocated.

Returns:
The new reference count for the memory block (should be 0 if successfully deallocated) or -1 if the
pointer ”ptr” did not point to a legal memory block.

5.2.3.3 void membinit (struct memb blocks∗ m)

Initialize a memory block that was declared withMEMB().

Parameters:
m A memory block previosly declared withMEMB().

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.2 Example applications 27

5.2.3.4 char membref (struct memb blocks∗ m, char ∗ ptr)

Increase the reference count for a memory chunk.

Note:
No sanity checks are currently made.

Parameters:
m m A memory block previosly declared withMEMB().

ptr A pointer to the memory chunk for which the reference count should be increased.

Returns:
The new reference count.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

28 uIP 0.9 Module Documentation

5.3 uIP configuration functions

5.3.1 Detailed Description

The uIP configuration functions are used for setting run-time parameters in uIP such as IP addresses.

Defines

• #defineuip sethostaddr(addr)

Set the IP address of this host.

• #defineuip gethostaddr(addr)

Get the IP address of this host.

• #defineuip setdraddr(addr)

Set the default router’s IP address.

• #defineuip setnetmask(addr)

Set the netmask.

• #defineuip getdraddr(addr)

Get the default router’s IP address.

• #defineuip getnetmask(addr)

Get the netmask.

• #defineuip setethaddr(eaddr)

Specifiy the Ethernet MAC address.

5.3.2 Define Documentation

5.3.2.1 #define uipgetdraddr(addr)

Get the default router’s IP address.

Parameters:
addr A pointer to a 4-byte array that will be filled in with the IP address of the default router.

5.3.2.2 #define uipgethostaddr(addr)

Get the IP address of this host.

The IP address is represented as a 4-byte array where the first octet of the IP address is put in the first
member of the 4-byte array.

Parameters:
addr A pointer to a 4-byte array that will be filled in with the currently configured IP address.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.3 uIP configuration functions 29

5.3.2.3 #define uipgetnetmask(addr)

Get the netmask.

Parameters:
addr A pointer to a 4-byte array that will be filled in with the value of the netmask.

5.3.2.4 #define uipsetdraddr(addr)

Set the default router’s IP address.

Parameters:
addr A pointer to a 4-byte array containing the IP address of the default router.

5.3.2.5 #define uipsetethaddr(eaddr)

Specifiy the Ethernet MAC address.

The ARP code needs to know the MAC address of the Ethernet card in order to be able to respond to ARP
queries and to generate working Ethernet headers.

Note:
This macro only specifies the Ethernet MAC address to the ARP code. It cannot be used to change the
MAC address of the Ethernet card.

Parameters:
eaddr A pointer to a structuip eth addrcontaining the Ethernet MAC address of the Ethernet card.

5.3.2.6 #define uipsethostaddr(addr)

Set the IP address of this host.

The IP address is represented as a 4-byte array where the first octet of the IP address is put in the first
member of the 4-byte array.

Parameters:
addr A pointer to a 4-byte representation of the IP address.

5.3.2.7 #define uipsetnetmask(addr)

Set the netmask.

Parameters:
addr A pointer to a 4-byte array containing the IP address of the netmask.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

30 uIP 0.9 Module Documentation

5.4 uIP initialization functions

5.4.1 Detailed Description

The uIP initialization functions are used for booting uIP.

Functions

• void uip init (void)

uIP initialization function.

5.4.2 Function Documentation

5.4.2.1 void uip init (void)

uIP initialization function.

This function should be called at boot up to initilize the uIP TCP/IP stack.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.5 uIP device driver functions 31

5.5 uIP device driver functions

5.5.1 Detailed Description

These functions are used by a network device driver for interacting with uIP.

Defines

• #defineuip input()

Process an incoming packet.

• #defineuip periodic(conn)

Periodic processing for a connection identified by its number.

• #defineuip periodicconn(conn)

Periodic processing for a connection identified by a pointer to its structure.

• #defineuip udp periodic(conn)

Periodic processing for a UDP connection identified by its number.

• #defineuip udp periodicconn(conn)

Periodic processing for a UDP connection identified by a pointer to its structure.

Variables

• u8 t uip buf [UIP BUFSIZE+2]

The uIP packet buffer.

5.5.2 Define Documentation

5.5.2.1 #define uipinput()

Process an incoming packet.

This function should be called when the device driver has received a packet from the network. The packet
from the device driver must be present in the uipbuf buffer, and the length of the packet should be placed
in the uip len variable.

When the function returns, there may be an outbound packet placed in the uipbuf packet buffer. If so, the
uip len variable is set to the length of the packet. If no packet is to be sent out, the uiplen variable is set to
0.

The usual way of calling the function is presented by the source code below.

uip_len = devicedriver_poll();
if(uip_len > 0) {

uip_input();
if(uip_len > 0) {

devicedriver_send();
}

}

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

32 uIP 0.9 Module Documentation

Note:
If you are writing a uIP device driver that needs ARP (Address Resolution Protocol), e.g., when run-
ning uIP over Ethernet, you will need to call the uIP ARP code before calling this function:

#define BUF ((struct uip_eth_hdr *)&uip_buf[0])
uip_len = ethernet_devicedrver_poll();
if(uip_len > 0) {

if(BUF->type == HTONS(UIP_ETHTYPE_IP)) {
uip_arp_ipin();
uip_input();
if(uip_len > 0) {

uip_arp_out();
ethernet_devicedriver_send();

}
} else if(BUF->type == HTONS(UIP_ETHTYPE_ARP)) {

uip_arp_arpin();
if(uip_len > 0) {

ethernet_devicedriver_send();
}

}

5.5.2.2 #define uipperiodic(conn)

Periodic processing for a connection identified by its number.

This function does the necessary periodic processing (timers, polling) for a uIP TCP conneciton, and should
be called when the periodic uIP timer goes off. It should be called for every connection, regardless of
whether they are open of closed.

When the function returns, it may have an outbound packet waiting for service in the uIP packet buffer, and
if so the uiplen variable is set to a value larger than zero. The device driver should be called to send out
the packet.

The ususal way of calling the function is through a for() loop like this:

for(i = 0; i < UIP_CONNS; ++i) {
uip_periodic(i);
if(uip_len > 0) {

devicedriver_send();
}

}

Note:
If you are writing a uIP device driver that needs ARP (Address Resolution Protocol), e.g., when run-
ning uIP over Ethernet, you will need to call theuip arp out() function before calling the device driver:

for(i = 0; i < UIP_CONNS; ++i) {
uip_periodic(i);
if(uip_len > 0) {

uip_arp_out();
ethernet_devicedriver_send();

}
}

Parameters:
conn The number of the connection which is to be periodically polled.

5.5.2.3 #define uipperiodic conn(conn)

Periodic processing for a connection identified by a pointer to its structure.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.5 uIP device driver functions 33

Same asuip periodic()but takes a pointer to the actualuip connstruct instead of an integer as its argument.
This function can be used to force periodic processing of a specific connection.

Parameters:
conn A pointer to theuip connstruct for the connection to be processed.

5.5.2.4 #define uipudp periodic(conn)

Periodic processing for a UDP connection identified by its number.

This function is essentially the same as uipprerioic(), but for UDP connections. It is called in a similar
fashion as theuip periodic()function:

for(i = 0; i < UIP_UDP_CONNS; i++) {
uip_udp_periodic(i);
if(uip_len > 0) {

devicedriver_send();
}

}

Note:
As for theuip periodic()function, special care has to be taken when using uIP together with ARP and
Ethernet:

for(i = 0; i < UIP_UDP_CONNS; i++) {
uip_udp_periodic(i);
if(uip_len > 0) {

uip_arp_out();
ethernet_devicedriver_send();

}
}

Parameters:
conn The number of the UDP connection to be processed.

5.5.2.5 #define uipudp periodic conn(conn)

Periodic processing for a UDP connection identified by a pointer to its structure.

Same asuip udp periodic()but takes a pointer to the actualuip connstruct instead of an integer as its
argument. This function can be used to force periodic processing of a specific connection.

Parameters:
conn A pointer to theuip udp connstruct for the connection to be processed.

5.5.3 Variable Documentation

5.5.3.1 u8 t uip buf[UIP BUFSIZE+2]

The uIP packet buffer.

The uipbuf array is used to hold incoming and outgoing packets. The device driver should place incoming
data into this buffer. When sending data, the device driver should read the link level headers and the TCP/IP
headers from this buffer. The size of the link level headers is configured by the UIPLLH LEN define.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

34 uIP 0.9 Module Documentation

Note:
The application data need not be placed in this buffer, so the device driver must read it from the place
pointed to by the uipappdata pointer as illustrated by the following example:

void
devicedriver_send(void)
{

hwsend(&uip_buf[0], UIP_LLH_LEN);
hwsend(&uip_buf[UIP_LLH_LEN], 40);
hwsend(uip_appdata, uip_len - 40 - UIP_LLH_LEN);

}

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.6 uIP application functions 35

5.6 uIP application functions

5.6.1 Detailed Description

Functions used by an application running of top of uIP.

Defines

• #defineuip send(data, len)

Send data on the current connection.

• #defineuip datalen()

The length of any incoming data that is currently avaliable (if avaliable) in the uipappdata buffer.

• #defineuip urgdatalen()

The length of any out-of-band data (urgent data) that has arrived on the connection.

• #defineuip close()

Close the current connection.

• #defineuip abort()

Abort the current connection.

• #defineuip stop()

Tell the sending host to stop sending data.

• #defineuip stopped(conn)

Find out if the current connection has been previously stopped withuip stop().

• #defineuip restart()

Restart the current connection, if is has previously been stopped withuip stop().

• #defineuip newdata()

Is new incoming data available?

• #defineuip acked()

Has previously sent data been acknowledged?

• #defineuip connected()

Has the connection just been connected?

• #defineuip closed()

Has the connection been closed by the other end?

• #defineuip aborted()

Has the connection been aborted by the other end?

• #defineuip timedout()

Has the connection timed out?

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

36 uIP 0.9 Module Documentation

• #defineuip rexmit()

Do we need to retransmit previously data?

• #defineuip poll()

Is the connection being polled by uIP?

• #defineuip initialmss()

Get the initial maxium segment size (MSS) of the current connection.

• #defineuip mss()

Get the current maxium segment size that can be sent on the current connection.

• #defineuip udp remove(conn)

Removed a UDP connection.

• #defineuip udp send(len)

Send a UDP datagram of length len on the current connection.

Functions

• void uip listen(u16 t port)

Start listening to the specified port.

• void uip unlisten(u16 t port)

Stop listening to the specified port.

• uip conn∗ uip connect(u16 t ∗ripaddr,u16 t port)

Connect to a remote host using TCP.

• uip udp conn∗ uip udp new(u16 t ∗ripaddr,u16 t rport)

Set up a new UDP connection.

5.6.2 Define Documentation

5.6.2.1 #define uipabort()

Abort the current connection.

This function will abort (reset) the current connection, and is usually used when an error has occured that
prevents using theuip close()function.

5.6.2.2 #define uipaborted()

Has the connection been aborted by the other end?

Non-zero if the current connection has been aborted (reset) by the remote host.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.6 uIP application functions 37

5.6.2.3 #define uipacked()

Has previously sent data been acknowledged?

Will reduce to non-zero if the previously sent data has been acknowledged by the remote host. This means
that the application can send new data.

5.6.2.4 #define uipclose()

Close the current connection.

This function will close the current connection in a nice way.

5.6.2.5 #define uipclosed()

Has the connection been closed by the other end?

Is non-zero if the connection has been closed by the remote host. The application may then do the necessary
clean-ups.

5.6.2.6 #define uipconnected()

Has the connection just been connected?

Reduces to non-zero if the current connection has been connected to a remote host. This will happen both
if the connection has been actively opened (withuip connect()) or passively opened (withuip listen()).

5.6.2.7 #define uipdatalen()

The length of any incoming data that is currently avaliable (if avaliable) in the uipappdata buffer.

The test function uipdata() must first be used to check if there is any data available at all.

5.6.2.8 #define uipmss()

Get the current maxium segment size that can be sent on the current connection.

The current maxiumum segment size that can be sent on the connection is computed from the receiver’s
window and the MSS of the connection (which also is available by callinguip initialmss()).

5.6.2.9 #define uipnewdata()

Is new incoming data available?

Will reduce to non-zero if there is new data for the application present at the uipappdata pointer. The size
of the data is avaliable through the uiplen variable.

5.6.2.10 #define uippoll()

Is the connection being polled by uIP?

Is non-zero if the reason the application is invoked is that the current connection has been idle for a while
and should be polled.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

38 uIP 0.9 Module Documentation

The polling event can be used for sending data without having to wait for the remote host to send data.

5.6.2.11 #define uiprestart()

Restart the current connection, if is has previously been stopped withuip stop().

This function will open the receiver’s window again so that we start receiving data for the current connec-
tion.

5.6.2.12 #define uiprexmit()

Do we need to retransmit previously data?

Reduces to non-zero if the previously sent data has been lost in the network, and the application should
retransmit it. The application should send the exact same data as it did the last time, using theuip send()
function.

5.6.2.13 #define uipsend(data, len)

Send data on the current connection.

This function is used to send out a single segment of TCP data. Only applications that have been invoked
by uIP for event processing can send data.

The amount of data that actually is sent out after a call to this funcion is determined by the maximum
amount of data TCP allows. uIP will automatically crop the data so that only the appropriate amount of
data is sent. The functionuip mss()can be used to query uIP for the amount of data that actually will be
sent.

Note:
This function does not guarantee that the sent data will arrive at the destination. If the data is lost in
the network, the application will be invoked with theuip rexmit()event being set. The application will
then have to resend the data using this function.

Parameters:
data A pointer to the data which is to be sent.

len The maximum amount of data bytes to be sent.

5.6.2.14 #define uipstop()

Tell the sending host to stop sending data.

This function will close our receiver’s window so that we stop receiving data for the current connection.

5.6.2.15 #define uiptimedout()

Has the connection timed out?

Non-zero if the current connection has been aborted due to too many retransmissions.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.6 uIP application functions 39

5.6.2.16 #define uipudp remove(conn)

Removed a UDP connection.

Parameters:
conn A pointer to theuip udp connstructure for the connection.

5.6.2.17 #define uipudp send(len)

Send a UDP datagram of length len on the current connection.

This function can only be called in response to a UDP event (poll or newdata). The data must be present in
the uipbuf buffer, at the place pointed to by the uipappdata pointer.

Parameters:
len The length of the data in the uipbuf buffer.

5.6.2.18 #define uipurgdatalen()

The length of any out-of-band data (urgent data) that has arrived on the connection.

Note:
The configuration parameter UIPURGDATA must be set for this function to be enabled.

5.6.3 Function Documentation

5.6.3.1 structuip conn∗ uip connect (u16 t ∗ ripaddr, u16 t port)

Connect to a remote host using TCP.

This function is used to start a new connection to the specified port on the specied host. It allocates a new
connection identifier, sets the connection to the SYNSENT state and sets the retransmission timer to 0.
This will cause a TCP SYN segment to be sent out the next time this connection is periodically processed,
which usually is done within 0.5 seconds after the call touip connect().

Note:
This function is avaliable only if support for active open has been configured by defining UIP-
ACTIVE OPEN to 1 inuipopt.h.
Since this function requires the port number to be in network byte order, a convertion usingHTONS()
or htons()is necessary.

u16_t ipaddr[2];

uip_ipaddr(ipaddr, 192,168,1,2);
uip_connect(ipaddr, HTONS(80));

Parameters:
ripaddr A pointer to a 4-byte array representing the IP address of the remote hot.

port A 16-bit port number in network byte order.

Returns:
A pointer to the uIP connection identifier for the new connection, or NULL if no connection could be
allocated.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

40 uIP 0.9 Module Documentation

5.6.3.2 void uip listen (u16 t port)

Start listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversion usingHTONS() or
htons()is necessary.

uip_listen(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

5.6.3.3 structuip udp conn∗ uip udp new (u16 t ∗ ripaddr, u16 t rport)

Set up a new UDP connection.

Parameters:
ripaddr A pointer to a 4-byte structure representing the IP address of the remote host.

rport The remote port number in network byte order.

Returns:
Theuip udp connstructure for the new connection or NULL if no connection could be allocated.

5.6.3.4 void uipunlisten (u16 t port)

Stop listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversion usingHTONS() or
htons()is necessary.

uip_unlisten(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.7 uIP conversion functions 41

5.7 uIP conversion functions

5.7.1 Detailed Description

These functions can be used for converting between different data formats used by uIP.

Defines

• #defineuip ipaddr(addr, addr0, addr1, addr2, addr3)

Pack an IP address into a 4-byte array which is used by uIP to represent IP addresses.

• #defineHTONS(n)

Convert 16-bit quantity from host byte order to network byte order.

Functions

• u16 t htons(u16 t val)

Convert 16-bit quantity from host byte order to network byte order.

5.7.2 Define Documentation

5.7.2.1 #define HTONS(n)

Convert 16-bit quantity from host byte order to network byte order.

This macro is primarily used for converting constants from host byte order to network byte order. For
converting variables to network byte order, use thehtons()function instead.

5.7.2.2 #define uipipaddr(addr, addr0, addr1, addr2, addr3)

Pack an IP address into a 4-byte array which is used by uIP to represent IP addresses.

Example:

u16_t ipaddr[2];

uip_ipaddr(&ipaddr, 192,168,1,2);

Parameters:
addr A pointer to a 4-byte array that will be filled in with the IP addres.

addr0 The first octet of the IP address.

addr1 The second octet of the IP address.

addr2 The third octet of the IP address.

addr3 The forth octet of the IP address.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

42 uIP 0.9 Module Documentation

5.7.3 Function Documentation

5.7.3.1 u16 t htons (u16 t val)

Convert 16-bit quantity from host byte order to network byte order.

This function is primarily used for converting variables from host byte order to network byte order. For
converting constants to network byte order, use theHTONS()macro instead.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.8 Architecture specific uIP functions 43

5.8 Architecture specific uIP functions

5.8.1 Detailed Description

The functions in the architecture specific module implement the IP check sum and 32-bit additions.

The IP checksum calculation is the most computationally expensive operation in the TCP/IP stack and it
therefore pays off to implement this in efficient assembler. The purpose of the uip-arch module is to let the
checksum functions to be implemented in architecture specific assembler.

Files

• file uip arch.h

Declarations of architecture specific functions.

Functions

• void uip add32(u8 t ∗op32,u16 t op16)

Carry out a 32-bit addition.

• u16 t uip chksum(u16 t ∗buf, u16 t len)

Calculate the Internet checksum over a buffer.

• u16 t uip ipchksum(void)

Calculate the IP header checksum of the packet header in uipbuf.

• u16 t uip tcpchksum(void)

Calculate the TCP checksum of the packet in uipbuf and uipappdata.

Variables

• volatileu8 t uip acc32[4]

4-byte array used for the 32-bit sequence number calculations.

5.8.2 Function Documentation

5.8.2.1 void uipadd32 (u8 t ∗ op32, u16 t op16)

Carry out a 32-bit addition.

Because not all architectures for which uIP is intended has native 32-bit arithmetic, uIP uses an external C
function for doing the required 32-bit additions in the TCP protocol processing. This function should add
the two arguments and place the result in the global variable uipacc32.

Note:
The 32-bit integer pointed to by the op32 parameter and the result in the uipacc32 variable are in
network byte order (big endian).

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

44 uIP 0.9 Module Documentation

Parameters:
op32 A pointer to a 4-byte array representing a 32-bit integer in network byte order (big endian).

op16 A 16-bit integer in host byte order.

5.8.2.2 u16 t uip chksum (u16 t ∗ buf, u16 t len)

Calculate the Internet checksum over a buffer.

The Internet checksum is the one’s complement of the one’s complement sum of all 16-bit words in the
buffer.

See RFC1071.

Note:
This function is not called in the current version of uIP, but future versions might make use of it.

Parameters:
buf A pointer to the buffer over which the checksum is to be computed.

len The length of the buffer over which the checksum is to be computed.

Returns:
The Internet checksum of the buffer.

5.8.2.3 u16 t uip ipchksum (void)

Calculate the IP header checksum of the packet header in uipbuf.

The IP header checksum is the Internet checksum of the 20 bytes of the IP header.

Returns:
The IP header checksum of the IP header in the uipbuf buffer.

5.8.2.4 u16 t uip tcpchksum (void)

Calculate the TCP checksum of the packet in uipbuf and uipappdata.

The TCP checksum is the Internet checksum of data contents of the TCP segment, and a pseudo-header as
defined in RFC793.

Note:
The uipappdata pointer that points to the packet data may point anywhere in memory, so it is not
possible to simply calculate the Internet checksum of the contents of the uipbuf buffer.

Returns:
The TCP checksum of the TCP segment in uipbuf and pointed to by uipappdata.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.9 uIP Address Resolution Protocol 45

5.9 uIP Address Resolution Protocol

5.9.1 Detailed Description

The Address Resolution Protocol ARP is used for mapping between IP addresses and link level addresses
such as the Ethernet MAC addresses. ARP uses broadcast queries to ask for the link level address of a
known IP address and the host which is configured with the IP address for which the query was meant, will
respond with its link level address.

Note:
This ARP implementation only supports Ethernet.

Files

• file uip arp.c

Implementation of the ARP Address Resolution Protocol.

• file uip arp.h

Macros and definitions for the ARP module.

Data Structures

• structuip eth addr

Representation of a 48-bit Ethernet address.

• structuip eth hdr

The Ethernet header.

Functions

• void uip arp init (void)

Initialize the ARP module.

• void uip arp ipin (void)

ARP processing for incoming IP packets.

• void uip arp arpin(void)

ARP processing for incoming ARP packets.

• void uip arp out (void)

Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

• void uip arp timer (void)

Periodic ARP processing function.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

46 uIP 0.9 Module Documentation

5.9.2 Function Documentation

5.9.2.1 void uiparp arpin (void)

ARP processing for incoming ARP packets.

This function should be called by the device driver when an ARP packet has been received. The function
will act differently depending on the ARP packet type: if it is a reply for a request that we previously sent
out, the ARP cache will be filled in with the values from the ARP reply. If the incoming ARP packet is an
ARP request for our IP address, an ARP reply packet is created and put into the uipbuf[] buffer.

When the function returns, the value of the global variable uiplen indicates whether the device driver
should send out a packet or not. If uiplen is zero, no packet should be sent. If uiplen is non-zero, it
contains the length of the outbound packet that is present in the uipbuf[] buffer.

This function expects an ARP packet with a prepended Ethernet header in the uipbuf[] buffer, and the
length of the packet in the global variable uiplen.

5.9.2.2 void uiparp ipin (void)

ARP processing for incoming IP packets.

This function should be called by the device driver when an IP packet has been received. The function will
check if the address is in the ARP cache, and if so the ARP cache entry will be refreshed. If no ARP cache
entry was found, a new one is created.

This function expects an IP packet with a prepended Ethernet header in the uipbuf[] buffer, and the length
of the packet in the global variable uiplen.

5.9.2.3 void uiparp out (void)

Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

This function should be called before sending out an IP packet. The function checks the destination IP
address of the IP packet to see what Ethernet MAC address that should be used as a destination MAC
address on the Ethernet.

If the destination IP address is in the local network (determined by logical ANDing of netmask and our
IP address), the function checks the ARP cache to see if an entry for the destination IP address is found.
If so, an Ethernet header is prepended and the function returns. If no ARP cache entry is found for the
destination IP address, the packet in the uipbuf[] is replaced by an ARP request packet for the IP address.
The IP packet is dropped and it is assumed that they higher level protocols (e.g., TCP) eventually will
retransmit the dropped packet.

If the destination IP address is not on the local network, the IP address of the default router is used instead.

When the function returns, a packet is present in the uipbuf[] buffer, and the length of the packet is in the
global variable uiplen.

5.9.2.4 void uiparp timer (void)

Periodic ARP processing function.

This function performs periodic timer processing in the ARP module and should be called at regular inter-
vals. The recommended interval is 10 seconds between the calls.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.10 Serial Line IP (SLIP) protocol 47

5.10 Serial Line IP (SLIP) protocol

5.10.1 Detailed Description

The SLIP protocol is a very simple way to transmit IP packets over a serial line. It does not provide any
framing or error control, and is therefore not very widely used today.

This SLIP implementation requires two functions for accessing the serial device:slipdevcharpoll() and
slipdevcharput(). These must be implemented specifically for the system on which the SLIP protocol is
to be run.

Files

• file slipdev.c

SLIP protocol implementation.

• file slipdev.h

SLIP header file.

Functions

• void slipdevcharput (u8 t c)

Put a character on the serial device.

• u8 t slipdevcharpoll (u8 t ∗c)

Poll the serial device for a character.

• void slipdev init (void)

Initialize the SLIP module.

• void slipdevsend(void)

Send the packet in the uipbuf and uipappdata buffers using the SLIP protocol.

• u16 t slipdevpoll (void)

Poll the SLIP device for an available packet.

5.10.2 Function Documentation

5.10.2.1 u8 t slipdev char poll (u8 t ∗ c)

Poll the serial device for a character.

This function is used by the SLIP implementation to poll the serial device for a character. It must be
implemented specifically for the system on which the SLIP implementation is to be run.

The function should return immediately regardless if a character is available or not. If a character is
available it should be placed at the memory location pointed to by the pointer supplied by the arguement c.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

48 uIP 0.9 Module Documentation

Parameters:
c A pointer to a byte that is filled in by the function with the received character, if available.

Return values:
0 If no character is available.

Non-zero If a character is available.

5.10.2.2 void slipdevchar put (u8 t c)

Put a character on the serial device.

This function is used by the SLIP implementation to put a character on the serial device. It must be
implemented specifically for the system on which the SLIP implementation is to be run.

Parameters:
c The character to be put on the serial device.

5.10.2.3 void slipdevinit (void)

Initialize the SLIP module.

This function does not initialize the underlying RS232 device, but only the SLIP part.

5.10.2.4 u16 t slipdev poll (void)

Poll the SLIP device for an available packet.

This function will poll the SLIP device to see if a packet is available. It uses a buffer in which all avaliable
bytes from the RS232 interface are read into. When a full packet has been read into the buffer, the packet
is copied into the uipbuf buffer and the length of the packet is returned.

Returns:
The length of the packet placed in the uipbuf buffer, or zero if no packet is available.

Here is the call graph for this function:

slipdev_poll slipdev_char_poll

5.10.2.5 void slipdevsend (void)

Send the packet in the uipbuf and uipappdata buffers using the SLIP protocol.

The first 40 bytes of the packet (the IP and TCP headers) are read from the uipbuf buffer, and the following
bytes (the application data) are read from the uipappdata buffer.

Here is the call graph for this function:

slipdev_send slipdev_char_put

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.11 Configuration options for uIP 49

5.11 Configuration options for uIP

5.11.1 Detailed Description

uIP is configured using the per-project configuration file ”uipopt.h”. This file contains all compile-time
options for uIP and should be tweaked to match each specific project. The uIP distribution contains a
documented example ”uipopt.h” that can be copied and modified for each project.

Files

• file uipopt.h

Configuration options for uIP.

Modules

• uIP type definitions
• Static configuration options
• IP configuration options
• UDP configuration options
• TCP configuration options
• ARP configuration options
• General configuration options
• CPU architecture configuration
• Appication specific configurations

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

50 uIP 0.9 Module Documentation

5.12 uIP type definitions

Typedefs

• typedef unsigned charu8 t

The 8-bit unsigned data type.

• typedef unsigned shortu16 t

The 16-bit unsigned data type.

• typedef unsigned shortuip statst

The statistics data type.

5.12.1 Typedef Documentation

5.12.1.1 typedef unsigned shortu16 t

The 16-bit unsigned data type.

This may have to be tweaked for your particular compiler. ”unsigned short” works for most compilers.

5.12.1.2 typedef unsigned charu8 t

The 8-bit unsigned data type.

This may have to be tweaked for your particular compiler. ”unsigned char” works for most compilers.

5.12.1.3 typedef unsigned shortuip stats t

The statistics data type.

This datatype determines how high the statistics counters are able to count.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.13 Static configuration options 51

5.13 Static configuration options

5.13.1 Detailed Description

These configuration options can be used for setting the IP address settings statically, but only if UIP-
FIXEDADDR is set to 1. The configuration options for a specific node includes IP address, netmask
and default router as well as the Ethernet address. The netmask, default router and Ethernet address are
appliciable only if uIP should be run over Ethernet.

All of these should be changed to suit your project.

Defines

• #defineUIP FIXEDADDR

Determines if uIP should use a fixed IP address or not.

• #defineUIP PINGADDRCONF

Ping IP address asignment.

• #defineUIP IPADDR0

The first octet of the IP address of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP IPADDR1

The second octet of the IP address of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP IPADDR2

The third octet of the IP address of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP IPADDR3

The fourth octet of the IP address of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP NETMASK0

The first octet of the netmask of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP NETMASK1

The second octet of the netmask of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP NETMASK2

The third octet of the netmask of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP NETMASK3

The fourth octet of the netmask of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP DRIPADDR0

The first octet of the IP address of the default router, if UIPFIXEDADDR is 1.

• #defineUIP DRIPADDR1

The second octet of the IP address of the default router, if UIPFIXEDADDR is 1.

• #defineUIP DRIPADDR2

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

52 uIP 0.9 Module Documentation

The third octet of the IP address of the default router, if UIPFIXEDADDR is 1.

• #defineUIP DRIPADDR3

The fourth octet of the IP address of the default router, if UIPFIXEDADDR is 1.

• #defineUIP FIXEDETHADDR

Specifies if the uIP ARP module should be compiled with a fixed Ethernet MAC address or not.

• #defineUIP ETHADDR0

The first octet of the Ethernet address if UIPFIXEDETHADDR is 1.

• #defineUIP ETHADDR1

The second octet of the Ethernet address if UIPFIXEDETHADDR is 1.

• #defineUIP ETHADDR2

The third octet of the Ethernet address if UIPFIXEDETHADDR is 1.

• #defineUIP ETHADDR3

The fourth octet of the Ethernet address if UIPFIXEDETHADDR is 1.

• #defineUIP ETHADDR4

The fifth octet of the Ethernet address if UIPFIXEDETHADDR is 1.

• #defineUIP ETHADDR5

The sixth octet of the Ethernet address if UIPFIXEDETHADDR is 1.

5.13.2 Define Documentation

5.13.2.1 #define UIPFIXEDADDR

Determines if uIP should use a fixed IP address or not.

If uIP should use a fixed IP address, the settings are set in theuipopt.hfile. If not, the macrosuip -
sethostaddr(), uip setdraddr()anduip setnetmask()should be used instead.

5.13.2.2 #define UIPFIXEDETHADDR

Specifies if the uIP ARP module should be compiled with a fixed Ethernet MAC address or not.

If this configuration option is 0, the macrouip setethaddr()can be used to specify the Ethernet address at
run-time.

5.13.2.3 #define UIPPINGADDRCONF

Ping IP address asignment.

uIP uses a ”ping” packets for setting its own IP address if this option is set. If so, uIP will start with an
empty IP address and the destination IP address of the first incoming ”ping” (ICMP echo) packet will be
used for setting the hosts IP address.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.13 Static configuration options 53

Note:
This works only if UIPFIXEDADDR is 0.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

54 uIP 0.9 Module Documentation

5.14 IP configuration options

Defines

• #defineUIP TTL 255

The IP TTL (time to live) of IP packets sent by uIP.

• #defineUIP REASSEMBLY

Turn on support for IP packet reassembly.

• #defineUIP REASSMAXAGE 40

The maximum time an IP fragment should wait in the reassembly buffer before it is dropped.

5.14.1 Define Documentation

5.14.1.1 #define UIPREASSEMBLY

Turn on support for IP packet reassembly.

uIP supports reassembly of fragmented IP packets. This features requires an additonal amount of RAM
to hold the reassembly buffer and the reassembly code size is approximately 700 bytes. The reassembly
buffer is of the same size as the uipbuf buffer (configured by UIPBUFSIZE).

Note:
IP packet reassembly is not heavily tested.

5.14.1.2 #define UIPTTL 255

The IP TTL (time to live) of IP packets sent by uIP.

This should normally not be changed.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.15 UDP configuration options 55

5.15 UDP configuration options

5.15.1 Detailed Description
Note:

The UDP support in uIP is still not entirely complete; there is no support for sending or receiving
broadcast or multicast packets, but it works well enough to support a number of vital applications such
as DNS queries, though

Defines

• #defineUIP UDP

Toggles wether UDP support should be compiled in or not.

• #defineUIP UDP CHECKSUMS

Toggles if UDP checksums should be used or not.

• #defineUIP UDP CONNS

The maximum amount of concurrent UDP connections.

• #defineUIP UDP APPCALL

The name of the function that should be called when UDP datagrams arrive.

5.15.2 Define Documentation

5.15.2.1 #define UIPUDP CHECKSUMS

Toggles if UDP checksums should be used or not.

Note:
Support for UDP checksums is currently not included in uIP, so this option has no function.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

56 uIP 0.9 Module Documentation

5.16 TCP configuration options

Defines

• #defineUIP ACTIVE OPEN

Determines if support for opening connections from uIP should be compiled in.

• #defineUIP CONNS

The maximum number of simultaneously open TCP connections.

• #defineUIP LISTENPORTS

The maximum number of simultaneously listening TCP ports.

• #defineUIP RECEIVE WINDOW

The size of the advertised receiver’s window.

• #defineUIP URGDATA

Determines if support for TCP urgent data notification should be compiled in.

• #defineUIP RTO 3

The initial retransmission timeout counted in timer pulses.

• #defineUIP MAXRTX 8

The maximum number of times a segment should be retransmitted before the connection should be aborted.

• #defineUIP MAXSYNRTX 3

The maximum number of times a SYN segment should be retransmitted before a connection request should
be deemed to have been unsuccessful.

• #defineUIP TCP MSS(UIP BUFSIZE - UIPLLH LEN - 40)

The TCP maximum segment size.

• #defineUIP TIME WAIT TIMEOUT 120

How long a connection should stay in the TIMEWAIT state.

5.16.1 Define Documentation

5.16.1.1 #define UIPACTIVE OPEN

Determines if support for opening connections from uIP should be compiled in.

If the applications that are running on top of uIP for this project do not need to open outgoing TCP con-
nections, this configration option can be turned off to reduce the code size of uIP.

5.16.1.2 #define UIPCONNS

The maximum number of simultaneously open TCP connections.

Since the TCP connections are statically allocated, turning this configuration knob down results in less
RAM used. Each TCP connection requires approximatly 30 bytes of memory.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.16 TCP configuration options 57

5.16.1.3 #define UIPLISTENPORTS

The maximum number of simultaneously listening TCP ports.

Each listening TCP port requires 2 bytes of memory.

5.16.1.4 #define UIPMAXRTX 8

The maximum number of times a segment should be retransmitted before the connection should be aborted.

This should not be changed.

5.16.1.5 #define UIPMAXSYNRTX 3

The maximum number of times a SYN segment should be retransmitted before a connection request should
be deemed to have been unsuccessful.

This should not need to be changed.

5.16.1.6 #define UIPRECEIVE WINDOW

The size of the advertised receiver’s window.

Should be set low (i.e., to the size of the uipbuf buffer) is the application is slow to process incoming data,
or high (32768 bytes) if the application processes data quickly.

5.16.1.7 #define UIPRTO 3

The initial retransmission timeout counted in timer pulses.

This should not be changed.

5.16.1.8 #define UIPTCP MSS (UIP BUFSIZE - UIP LLH LEN - 40)

The TCP maximum segment size.

This is should not be to set to more than UIPBUFSIZE - UIPLLH LEN - 40.

5.16.1.9 #define UIPTIME WAIT TIMEOUT 120

How long a connection should stay in the TIMEWAIT state.

This configiration option has no real implication, and it should be left untouched.

5.16.1.10 #define UIPURGDATA

Determines if support for TCP urgent data notification should be compiled in.

Urgent data (out-of-band data) is a rarely used TCP feature that very seldom would be required.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

58 uIP 0.9 Module Documentation

5.17 ARP configuration options

Defines

• #defineUIP ARPTAB SIZE

The size of the ARP table.

• #defineUIP ARP MAXAGE 120

The maxium age of ARP table entries measured in 10ths of seconds.

5.17.1 Define Documentation

5.17.1.1 #define UIPARP MAXAGE 120

The maxium age of ARP table entries measured in 10ths of seconds.

An UIP ARP MAXAGE of 120 corresponds to 20 minutes (BSD default).

5.17.1.2 #define UIPARPTAB SIZE

The size of the ARP table.

This option should be set to a larger value if this uIP node will have many connections from the local
network.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.18 General configuration options 59

5.18 General configuration options

Defines

• #defineUIP BUFSIZE

The size of the uIP packet buffer.

• #defineUIP STATISTICS

Determines if statistics support should be compiled in.

• #defineUIP LOGGING

Determines if logging of certain events should be compiled in.

• #defineUIP LLH LEN

The link level header length.

Functions

• void uip log (char∗msg)

Print out a uIP log message.

5.18.1 Define Documentation

5.18.1.1 #define UIPBUFSIZE

The size of the uIP packet buffer.

The uIP packet buffer should not be smaller than 60 bytes, and does not need to be larger than 1500 bytes.
Lower size results in lower TCP throughput, larger size results in higher TCP throughput.

5.18.1.2 #define UIPLLH LEN

The link level header length.

This is the offset into the uipbuf where the IP header can be found. For Ethernet, this should be set to 14.
For SLIP, this should be set to 0.

5.18.1.3 #define UIPLOGGING

Determines if logging of certain events should be compiled in.

This is useful mostly for debugging. The functionuip log() must be implemented to suit the architecture
of the project, if logging is turned on.

5.18.1.4 #define UIPSTATISTICS

Determines if statistics support should be compiled in.

The statistics is useful for debugging and to show the user.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

60 uIP 0.9 Module Documentation

5.18.2 Function Documentation

5.18.2.1 void uiplog (char ∗ msg)

Print out a uIP log message.

This function must be implemented by the module that uses uIP, and is called by uIP whenever a log
message is generated.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.19 CPU architecture configuration 61

5.19 CPU architecture configuration

5.19.1 Detailed Description

The CPU architecture configuration is where the endianess of the CPU on which uIP is to be run is specified.
Most CPUs today are little endian, and the most notable exception are the Motorolas which are big endian.
The BYTE ORDER macro should be changed to reflect the CPU architecture on which uIP is to be run.

Defines

• #defineBYTE ORDER

The byte order of the CPU architecture on which uIP is to be run.

5.19.2 Define Documentation

5.19.2.1 #define BYTEORDER

The byte order of the CPU architecture on which uIP is to be run.

This option can be either BIGENDIAN (Motorola byte order) or LITTLEENDIAN (Intel byte order).

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

62 uIP 0.9 Module Documentation

5.20 Appication specific configurations

5.20.1 Detailed Description

An uIP application is implemented using a single application function that is called by uIP whenever a
TCP/IP event occurs. The name of this function must be registered with uIP at compile time using the
UIP APPCALL definition.

uIP applications can store the application state within theuip connstructure by specifying the size of the
application structure with the UIPAPPSTATESIZE macro.

The file containing the definitions must be included in theuipopt.hfile.

The following example illustrates how this can look.

void httpd_appcall(void);
#define UIP_APPCALL httpd_appcall

struct httpd_state {
u8_t state;
u16_t count;
char *dataptr;
char *script;

};
#define UIP_APPSTATE_SIZE (sizeof(struct httpd_state))

Defines

• #defineUIP APPCALL smtpappcall

The name of the application function that uIP should call in response to TCP/IP events.

• #defineUIP APPSTATESIZE(sizeof(struct smtpstate))

The size of the application state that is to be stored in theuip connstructure.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.21 Web client 63

5.21 Web client

5.21.1 Detailed Description

This example shows a HTTP client that is able to download web pages and files from web servers. It
requires a number of callback functions to be implemented by the module that utilizes the code:webclient-
datahandler(), webclientconnected(), webclienttimedout(), webclientaborted(), webclientclosed().

Files

• file webclient.c

Implementation of the HTTP client.

• file webclient.h

Header file for the HTTP client.

Functions

• void webclientdatahandler(char∗data,u16 t len)

Callback function that is called from the webclient code when HTTP data has been received.

• void webclientconnected(void)

Callback function that is called from the webclient code when the HTTP connection has been connected to
the web server.

• void webclienttimedout(void)

Callback function that is called from the webclient code if the HTTP connection to the web server has timed
out.

• void webclientaborted(void)

Callback function that is called from the webclient code if the HTTP connection to the web server has been
aborted by the web server.

• void webclientclosed(void)

Callback function that is called from the webclient code when the HTTP connection to the web server has
been closed.

• void webclientinit (void)

Initialize the webclient module.

• unsigned charwebclientget(char∗host,u16 t port, char∗file)

Open an HTTP connection to a web server and ask for a file using the GET method.

• void webclientclose(void)

Close the currently open HTTP connection.

• char∗ webclientmimetype(void)

Obtain the MIME type of the current HTTP data stream.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

64 uIP 0.9 Module Documentation

• char∗ webclientfilename(void)

Obtain the filename of the current HTTP data stream.

• char∗ webclienthostname(void)

Obtain the hostname of the current HTTP data stream.

• unsigned shortwebclientport (void)

Obtain the port number of the current HTTP data stream.

5.21.2 Function Documentation

5.21.2.1 void webclientaborted (void)

Callback function that is called from the webclient code if the HTTP connection to the web server has been
aborted by the web server.

This function must be implemented by the module that uses the webclient code.

5.21.2.2 void webclientclosed (void)

Callback function that is called from the webclient code when the HTTP connection to the web server has
been closed.

This function must be implemented by the module that uses the webclient code.

5.21.2.3 void webclientconnected (void)

Callback function that is called from the webclient code when the HTTP connection has been connected to
the web server.

This function must be implemented by the module that uses the webclient code.

5.21.2.4 void webclientdatahandler (char ∗ data, u16 t len)

Callback function that is called from the webclient code when HTTP data has been received.

This function must be implemented by the module that uses the webclient code. The function is called
from the webclient module when HTTP data has been received. The function is not called when HTTP
headers are received, only for the actual data.

Note:
This function is called many times, repetedly, when data is being received, and not once when all data
has been received.

Parameters:
data A pointer to the data that has been received.

len The length of the data that has been received.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.21 Web client 65

5.21.2.5 char∗ webclient filename (void)

Obtain the filename of the current HTTP data stream.

The filename of an HTTP request may be changed by the web server, and may therefore not be the same
as when the original GET request was made withwebclientget(). This function is used for obtaining the
current filename.

Returns:
A pointer to the current filename.

5.21.2.6 unsigned char webclientget (char∗ host, u16 t port, char ∗ file)

Open an HTTP connection to a web server and ask for a file using the GET method.

This function opens an HTTP connection to the specified web server and requests the specified file using
the GET method. When the HTTP connection has been connected, thewebclientconnected()callback
function is called and when the HTTP data arrives thewebclientdatahandler()callback function is called.

The callback functionwebclienttimedout() is called if the web server could not be contacted, and the
webclientaborted()callback function is called if the HTTP connection is aborted by the web server.

When the HTTP request has been completed and the HTTP connection is closed, thewebclientclosed()
callback function will be called.

Note:
If the function is passed a host name, it must already be in the resolver cache in order for the function
to connect to the web server. It is therefore up to the calling module to implement the resolver calls
and the signal handler used for reporting a resolv query answer.

Parameters:
host A pointer to a string containing either a host name or a numerical IP address in dotted decimal

notation (e.g., 192.168.23.1).

port The port number to which to connect, in host byte order.

file A pointer to the name of the file to get.

Return values:
0 if the host name could not be found in the cache, or if a TCP connection could not be created.

1 if the connection was initiated.

Here is the call graph for this function:

webclient_get

htons

resolv_lookup

uip_connect

5.21.2.7 char∗ webclient hostname (void)

Obtain the hostname of the current HTTP data stream.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

66 uIP 0.9 Module Documentation

The hostname of the web server of an HTTP request may be changed by the web server, and may therefore
not be the same as when the original GET request was made withwebclientget(). This function is used
for obtaining the current hostname.

Returns:
A pointer to the current hostname.

5.21.2.8 char∗ webclient mimetype (void)

Obtain the MIME type of the current HTTP data stream.

Returns:
A pointer to a string contaning the MIME type. The string may be empty if no MIME type was
reported by the web server.

5.21.2.9 unsigned short webclientport (void)

Obtain the port number of the current HTTP data stream.

The port number of an HTTP request may be changed by the web server, and may therefore not be the
same as when the original GET request was made withwebclientget(). This function is used for obtaining
the current port number.

Returns:
The port number of the current HTTP data stream, in host byte order.

5.21.2.10 void webclienttimedout (void)

Callback function that is called from the webclient code if the HTTP connection to the web server has
timed out.

This function must be implemented by the module that uses the webclient code.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.22 SMTP E-mail sender 67

5.22 SMTP E-mail sender

5.22.1 Detailed Description

The Simple Mail Transfer Protocol (SMTP) as defined by RFC821 is the standard way of sending and
transfering e-mail on the Internet. This simple example implementation is intended as an example of how
to implement protocols in uIP, and is able to send out e-mail but has not been extensively tested.

Files

• file smtp.c

SMTP example implementation.

• file smtp.h

SMTP header file.

Defines

• #defineSMTP ERR OK 0

Error number that signifies a non-error condition.

Functions

• void smtpdone(unsigned char error)

Callback function that is called when an e-mail transmission is done.

• void smtpconfigure(char∗localhostname,u16 t ∗smtpserver)

Specificy an SMTP server and hostname.

• unsigned charsmtpsend(char∗to, char∗from, char∗subject, char∗msg,u16 t msglen)

Send an e-mail.

5.22.2 Function Documentation

5.22.2.1 void smtpconfigure (char∗ lhostname, u16 t ∗ server)

Specificy an SMTP server and hostname.

This function is used to configure the SMTP module with an SMTP server and the hostname of the host.

Parameters:
lhostname The hostname of the uIP host.

server A pointer to a 4-byte array representing the IP address of the SMTP server to be configured.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

68 uIP 0.9 Module Documentation

5.22.2.2 void smtpdone (unsigned charerror)

Callback function that is called when an e-mail transmission is done.

This function must be implemented by the module that uses the SMTP module.

Parameters:
error The number of the error if an error occured, or SMTPERR OK.

5.22.2.3 unsigned char smtpsend (char∗ to, char ∗ from, char ∗ subject, char ∗ msg, u16 t msglen)

Send an e-mail.

Parameters:
to The e-mail address of the receiver of the e-mail.

from The e-mail address of the sender of the e-mail.

subject The subject of the e-mail.

msg The actual e-mail message.

msglen The length of the e-mail message.

Here is the call graph for this function:

smtp_send uip_connect

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.23 Telnet server 69

5.23 Telnet server

5.23.1 Detailed Description

The uIP telnet server provides a command based interface to uIP. It allows using the ”telnet” application to
access uIP, and implements the required telnet option negotiation.

The code is structured in a way which makes it possible to add commands without having to rewrite
the main telnet code. The main telnet code calls two callback functions,telnetdconnected()andtelnetd-
input(), when a telnet connection has been established and when a line of text arrives on a telnet connection.
These two functions can be implemented in a way which suits the particular application or environment in
which the uIP system is intended to be run.

The uIP distribution contains an example telnet shell implementation that provides a basic set of commands.

Files

• file telnetd-shell.c

An example telnet server shell.

• file telnetd.c

Implementation of the Telnet server.

• file telnetd.h

Header file for the telnet server.

Data Structures

• structtelnetdstate

A telnet connection structure.

Defines

• #defineTELNETD LINELEN

The maximum length of a telnet line.

• #defineTELNETD NUMLINES

The number of output lines being buffered for all telnet connections.

Functions

• void telnetdconnected(structtelnetdstate∗s)

Callback function that is called when a telnet connection has been established.

• void telnetdinput (structtelnetdstate∗s, char∗cmd)

Callback function that is called when a line of text has arrived on a telnet connection.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

70 uIP 0.9 Module Documentation

• void telnetdclose(structtelnetdstate∗s)

Close a telnet session.

• void telnetdoutput(structtelnetdstate∗s, char∗s1, char∗s2)

Print out a string on a telnet connection.

• void telnetdprompt(structtelnetdstate∗s, char∗str)

Print a prompt on a telnet connection.

• void telnetdinit (void)

Initialize the telnet server.

5.23.2 Function Documentation

5.23.2.1 void telnetdclose (structtelnetd state∗ s)

Close a telnet session.

This function can be called from a telnet command in order to close the connection.

Parameters:
s The connection which is to be closed.

5.23.2.2 void telnetdconnected (structtelnetd state∗ s)

Callback function that is called when a telnet connection has been established.

Parameters:
s The telnet connection.

Here is the call graph for this function:

telnetd_connected

telnetd_output

telnetd_prompt

5.23.2.3 void telnetdinit (void)

Initialize the telnet server.

This function will perform the necessary initializations and start listening on TCP port 23.

Here is the call graph for this function:

telnetd_init

memb_init

uip_listen

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.23 Telnet server 71

5.23.2.4 void telnetdinput (struct telnetd state∗ s, char ∗ cmd)

Callback function that is called when a line of text has arrived on a telnet connection.

Parameters:
s The telnet connection.

cmd The line of text.

Here is the call graph for this function:

telnetd_input telnetd_prompt

5.23.2.5 void telnetdoutput (struct telnetd state∗ s, char ∗ str1, char ∗ str2)

Print out a string on a telnet connection.

This function can be called from a telnet command parser in order to print out a string of text on the
connection. The two strings given as arguments to the function will be concatenated, a carrige return and a
new line character will be added, and the line is sent.

Parameters:
s The telnet connection.

str1 The first string.

str2 The second string.

5.23.2.6 void telnetdprompt (struct telnetd state∗ s, char ∗ str)

Print a prompt on a telnet connection.

This function can be called by the telnet command shell in order to print out a command prompt.

Parameters:
s A telnet connection.

str The command prompt.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

72 uIP 0.9 Module Documentation

5.24 Web server

5.24.1 Detailed Description

The uIP web server is a very simplistic implementation of an HTTP server. It can serve web pages and files
from a read-only ROM filesystem, and provides a very small scripting language.

The script language is very simple and works as follows. Each script line starts with a command character,
either ”i”, ”t”, ”c”, ”#” or ”.”. The ”i” command tells the script interpreter to ”include” a file from the
virtual file system and output it to the web browser. The ”t” command should be followed by a line of
text that is to be output to the browser. The ”c” command is used to call one of the C functions from the
httpd-cgi.c file. A line that starts with a ”#” is ignored (i.e., the ”#” denotes a comment), and the ”.” denotes
the last script line.

The script that produces the file statistics page looks somewhat like this:

i /header.html
t <h1>File statistics</h1>
<table width="100%">
t <tr><td>/index.html</td><td>
c a /index.html
t </td></tr> <tr><td>/cgi/files</td><td>
c a /cgi/files
t </td></tr> <tr><td>/cgi/tcp</td><td>
c a /cgi/tcp
t </td></tr> <tr><td>/404.html</td><td>
c a /404.html
t </td></tr></table>
i /footer.plain
.

Files

• file cgi.c

HTTP server script language C functions file.

• file cgi.h

HTTP script language header file.

• file fs.c

HTTP server read-only file system code.

• file fs.h

HTTP server read-only file system header file.

• file httpd.c

HTTP server.

• file httpd.h

HTTP server header file.

Data Structures

• structfs file

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.24 Web server 73

An open file in the read-only file system.

Functions

• void httpd init (void)

Initialize the web server.

• int fs open(const char∗name, structfs file ∗file)

Open a file in the read-only file system.

• void fs init (void)

Initialize the read-only file system.

Variables

• cgifunctioncgitab[]

A table containing pointers to C functions that can be called from a web server script.

5.24.2 Function Documentation

5.24.2.1 int fsopen (const char∗ name, struct fs file ∗ file)

Open a file in the read-only file system.

Parameters:
name The name of the file.

file The file pointer, which must be allocated by caller and will be filled in by the function.

5.24.2.2 void httpdinit (void)

Initialize the web server.

Starts to listen for incoming connection requests on TCP port 80.

Here is the call graph for this function:

httpd_init

fs_init

uip_listen

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

74 uIP 0.9 Module Documentation

5.25 uIP hostname resolver functions

5.25.1 Detailed Description

The uIP DNS resolver functions are used to lookup a hostname and map it to a numerical IP address.
It maintains a list of resolved hostnames that can be queried with theresolv lookup() function. New
hostnames can be resolved using theresolvquery()function.

When a hostname has been resolved (or found to be non-existant), the resolver code calls a callback func-
tion calledresolv found()that must be implemented by the module that uses the resolver.

Files

• file resolv.c

DNS host name to IP address resolver.

• file resolv.h

DNS resolver code header file.

Functions

• void resolv found(char∗name,u16 t ∗ipaddr)

Callback function which is called when a hostname is found.

• void resolvconf (u16 t ∗dnsserver)

Configure which DNS server to use for queries.

• u16 t ∗ resolvgetserver(void)

Obtain the currently configured DNS server.

• void resolv init (void)

Initalize the resolver.

• u16 t ∗ resolv lookup(char∗name)

Look up a hostname in the array of known hostnames.

• void resolvquery(char∗name)

Queues a name so that a question for the name will be sent out.

5.25.2 Function Documentation

5.25.2.1 void resolvconf (u16 t ∗ dnsserver)

Configure which DNS server to use for queries.

Parameters:
dnsserverA pointer to a 4-byte representation of the IP address of the DNS server to be configured.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

5.25 uIP hostname resolver functions 75

Here is the call graph for this function:

resolv_conf uip_udp_new

5.25.2.2 void resolvfound (char ∗ name, u16 t ∗ ipaddr)

Callback function which is called when a hostname is found.

This function must be implemented by the module that uses the DNS resolver. It is called when a hostname
is found, or when a hostname was not found.

Parameters:
name A pointer to the name that was looked up.

ipaddr A pointer to a 4-byte array containing the IP address of the hostname, or NULL if the hostname
could not be found.

5.25.2.3 u16 t∗ resolv getserver (void)

Obtain the currently configured DNS server.

Returns:
A pointer to a 4-byte representation of the IP address of the currently configured DNS server or NULL
if no DNS server has been configured.

5.25.2.4 u16 t∗ resolv lookup (char ∗ name)

Look up a hostname in the array of known hostnames.

Note:
This function only looks in the internal array of known hostnames, it does not send out a query for the
hostname if none was found. The functionresolvquery()can be used to send a query for a hostname.

Returns:
A pointer to a 4-byte representation of the hostname’s IP address, or NULL if the hostname was not
found in the array of hostnames.

5.25.2.5 void resolvquery (char ∗ name)

Queues a name so that a question for the name will be sent out.

Parameters:
name The hostname that is to be queried.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

76 uIP 0.9 Module Documentation

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

Chapter 6

uIP 0.9 Data Structure Documentation

6.1 fs file Struct Reference

#include <fs.h >

6.1.1 Detailed Description

An open file in the read-only file system.

Data Fields

• char∗ data

The actual file data.

• int len

The length of the file data.

78 uIP 0.9 Data Structure Documentation

6.2 telnetd state Struct Reference

#include <telnetd.h >

6.2.1 Detailed Description

A telnet connection structure.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

6.3 uip conn Struct Reference 79

6.3 uip conn Struct Reference

#include <uip.h >

6.3.1 Detailed Description

Representation of a uIP TCP connection.

The uipconn structure is used for identifying a connection. All but one field in the structure are to be
considered read-only by an application. The only exception is the appstate field whos purpose is to let the
application store application-specific state (e.g., file pointers) for the connection. The size of this field is
configured in the ”uipopt.h” header file.

Data Fields

• u16 t ripaddr[2]

The IP address of the remote host.

• u16 t lport

The local TCP port, in network byte order.

• u16 t rport

The local remote TCP port, in network byte order.

• u8 t rcv nxt [4]

The sequence number that we expect to receive next.

• u8 t sndnxt [4]

The sequence number that was last sent by us.

• u16 t len

Length of the data that was previously sent.

• u16 t mss

Current maximum segment size for the connection.

• u16 t initialmss

Initial maximum segment size for the connection.

• u8 t sa

Retransmission time-out calculation state variable.

• u8 t sv

Retransmission time-out calculation state variable.

• u8 t rto

Retransmission time-out.

• u8 t tcpstateflags

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

80 uIP 0.9 Data Structure Documentation

TCP state and flags.

• u8 t timer

The retransmission timer.

• u8 t nrtx

The number of retransmissions for the last segment sent.

• u8 t appstate[UIP APPSTATESIZE]

The application state.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

6.4 uip eth addr Struct Reference 81

6.4 uip eth addr Struct Reference

#include <uip arp.h >

6.4.1 Detailed Description

Representation of a 48-bit Ethernet address.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

82 uIP 0.9 Data Structure Documentation

6.5 uip eth hdr Struct Reference

#include <uip arp.h >

Collaboration diagram for uipeth hdr:

uip_eth_hdr

uip_eth_addr

dest
src

6.5.1 Detailed Description

The Ethernet header.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

6.6 uip stats Struct Reference 83

6.6 uip stats Struct Reference

#include <uip.h >

6.6.1 Detailed Description

The structure holding the TCP/IP statistics that are gathered if UIPSTATISTICS is set to 1.

Data Fields

• struct{
uip statst drop
uip statst recv
uip statst sent
uip statst vhlerr
uip statst hblenerr
uip statst lblenerr
uip statst fragerr
uip statst chkerr
uip statst protoerr

} ip

IP statistics.

• struct{
uip statst drop
uip statst recv
uip statst sent
uip statst typeerr

} icmp

ICMP statistics.

• struct{
uip statst drop
uip statst recv
uip statst sent
uip statst chkerr
uip statst ackerr
uip statst rst
uip statst rexmit
uip statst syndrop
uip statst synrst

} tcp

TCP statistics.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

84 uIP 0.9 Data Structure Documentation

6.6.2 Field Documentation

6.6.2.1 uip stats t uip stats::ackerr

Number of TCP segments with a bad ACK number.

6.6.2.2 uip stats t uip stats::chkerr

Number of TCP segments with a bad checksum.

6.6.2.3 uip stats t uip stats::drop

Number of dropped TCP segments.

6.6.2.4 uip stats t uip stats::fragerr

Number of packets dropped since they were IP fragments.

6.6.2.5 uip stats t uip stats::hblenerr

Number of packets dropped due to wrong IP length, high byte.

6.6.2.6 uip stats t uip stats::lblenerr

Number of packets dropped due to wrong IP length, low byte.

6.6.2.7 uip stats t uip stats::protoerr

Number of packets dropped since they were neither ICMP, UDP nor TCP.

6.6.2.8 uip stats t uip stats::recv

Number of recived TCP segments.

6.6.2.9 uip stats t uip stats::rexmit

Number of retransmitted TCP segments.

6.6.2.10 uip stats t uip stats::rst

Number of recevied TCP RST (reset) segments.

6.6.2.11 uip stats t uip stats::sent

Number of sent TCP segments.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

6.6 uip stats Struct Reference 85

6.6.2.12 uip stats t uip stats::syndrop

Number of dropped SYNs due to too few connections was avaliable.

6.6.2.13 uip stats t uip stats::synrst

Number of SYNs for closed ports, triggering a RST.

6.6.2.14 uip stats t uip stats::typeerr

Number of ICMP packets with a wrong type.

6.6.2.15 uip stats t uip stats::vhlerr

Number of packets dropped due to wrong IP version or header length.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

86 uIP 0.9 Data Structure Documentation

6.7 uip udp conn Struct Reference

#include <uip.h >

6.7.1 Detailed Description

Representation of a uIP UDP connection.

Data Fields

• u16 t ripaddr[2]

The IP address of the remote peer.

• u16 t lport

The local port number in network byte order.

• u16 t rport

The remote port number in network byte order.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

Chapter 7

uIP 0.9 File Documentation

7.1 apps/httpd/cgi.c File Reference

7.1.1 Detailed Description

HTTP server script language C functions file.

Author:
Adam Dunkels<adam@dunkels.com >

This file contains functions that are called by the web server scripts. The functions takes one argument,
and the return value is interpreted as follows. A zero means that the function did not complete and should
be invoked for the next packet as well. A non-zero value indicates that the function has completed and that
the web server should move along to the next script line.

#include "uip.h"

#include "cgi.h"

#include "httpd.h"

#include "fs.h"

#include <stdio.h >

#include <string.h >

Include dependency graph for cgi.c:

cgi.c

uip.h

fs.h

uipopt.h

httpd.h

cgi.h stdio.h string.h

mailto:adam@dunkels.com

88 uIP 0.9 File Documentation

Variables

• cgifunctioncgitab[]

A table containing pointers to C functions that can be called from a web server script.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

7.2 apps/httpd/cgi.h File Reference 89

7.2 apps/httpd/cgi.h File Reference

7.2.1 Detailed Description

HTTP script language header file.

Author:
Adam Dunkels<adam@dunkels.com >

This graph shows which files directly or indirectly include this file:

cgi.h

httpd.c cgi.c

Variables

• cgifunctioncgitab[]

A table containing pointers to C functions that can be called from a web server script.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

90 uIP 0.9 File Documentation

7.3 apps/httpd/fs.c File Reference

7.3.1 Detailed Description

HTTP server read-only file system code.

Author:
Adam Dunkels<adam@dunkels.com >

A simple read-only filesystem.

#include "uip.h"

#include "httpd.h"

#include "fs.h"

#include "fsdata.h"

#include "fsdata.c"

Include dependency graph for fs.c:

fs.c

uip.h

fs.h

uipopt.h

httpd.h

fsdata.h fsdata.c

Functions

• int fs open(const char∗name, structfs file ∗file)

Open a file in the read-only file system.

• void fs init (void)

Initialize the read-only file system.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

7.4 apps/httpd/fs.h File Reference 91

7.4 apps/httpd/fs.h File Reference

7.4.1 Detailed Description

HTTP server read-only file system header file.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

Include dependency graph for fs.h:

fs.h

uip.h

uipopt.h

httpd.h

This graph shows which files directly or indirectly include this file:

fs.h

httpd.c cgi.c fs.c

Data Structures

• structfs file

An open file in the read-only file system.

Functions

• int fs open(const char∗name, structfs file ∗file)

Open a file in the read-only file system.

• void fs init (void)

Initialize the read-only file system.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

92 uIP 0.9 File Documentation

7.5 apps/httpd/httpd.c File Reference

7.5.1 Detailed Description

HTTP server.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

#include "httpd.h"

#include "fs.h"

#include "fsdata.h"

#include "cgi.h"

Include dependency graph for httpd.c:

httpd.c

uip.h

fs.h

uipopt.h

httpd.h

fsdata.h cgi.h

Functions

• void httpd init (void)

Initialize the web server.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

7.6 apps/httpd/httpd.h File Reference 93

7.6 apps/httpd/httpd.h File Reference

7.6.1 Detailed Description

HTTP server header file.

Author:
Adam Dunkels<adam@dunkels.com >

This graph shows which files directly or indirectly include this file:

httpd.h

uipopt.h

uip.h

uip.chttpd.c cgi.c fs.c

smtp.h

Functions

• void httpd init (void)

Initialize the web server.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

94 uIP 0.9 File Documentation

7.7 apps/resolv/resolv.c File Reference

7.7.1 Detailed Description

DNS host name to IP address resolver.

Author:
Adam Dunkels<adam@dunkels.com >

This file implements a DNS host name to IP address resolver.

#include "resolv.h"

#include <string.h >

Include dependency graph for resolv.c:

resolv.c

resolv.h

uip.h

uipopt.h

httpd.h

string.h

Functions

• void resolvquery(char∗name)

Queues a name so that a question for the name will be sent out.

• u16 t ∗ resolv lookup(char∗name)

Look up a hostname in the array of known hostnames.

• u16 t ∗ resolvgetserver(void)

Obtain the currently configured DNS server.

• void resolvconf (u16 t ∗dnsserver)

Configure which DNS server to use for queries.

• void resolv init (void)

Initalize the resolver.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

7.8 apps/resolv/resolv.h File Reference 95

7.8 apps/resolv/resolv.h File Reference

7.8.1 Detailed Description

DNS resolver code header file.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

Include dependency graph for resolv.h:

resolv.h

uip.h

uipopt.h

httpd.h

This graph shows which files directly or indirectly include this file:

resolv.h

webclient.c resolv.c

Functions

• void resolv found(char∗name,u16 t ∗ipaddr)

Callback function which is called when a hostname is found.

• void resolvconf (u16 t ∗dnsserver)

Configure which DNS server to use for queries.

• u16 t ∗ resolvgetserver(void)

Obtain the currently configured DNS server.

• void resolv init (void)

Initalize the resolver.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

96 uIP 0.9 File Documentation

• u16 t ∗ resolv lookup(char∗name)

Look up a hostname in the array of known hostnames.

• void resolvquery(char∗name)

Queues a name so that a question for the name will be sent out.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

7.9 apps/smtp/smtp.c File Reference 97

7.9 apps/smtp/smtp.c File Reference

7.9.1 Detailed Description

SMTP example implementation.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

#include "smtp.h"

#include "smtp-strings.h"

#include <string.h >

Include dependency graph for smtp.c:

smtp.c

uip.h

uipopt.h

smtp.h

httpd.h

smtp-strings.h string.h

Functions

• unsigned charsmtpsend(char∗to, char∗from, char∗subject, char∗msg,u16 t msglen)

Send an e-mail.

• void smtpconfigure(char∗lhostname,u16 t ∗server)

Specificy an SMTP server and hostname.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

98 uIP 0.9 File Documentation

7.10 apps/smtp/smtp.h File Reference

7.10.1 Detailed Description

SMTP header file.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uipopt.h"

Include dependency graph for smtp.h:

smtp.h

uipopt.h

httpd.h

This graph shows which files directly or indirectly include this file:

smtp.h

smtp.c

Defines

• #defineSMTP ERR OK 0

Error number that signifies a non-error condition.

• #defineUIP APPCALL smtpappcall

The name of the application function that uIP should call in response to TCP/IP events.

• #defineUIP APPSTATESIZE(sizeof(struct smtpstate))

The size of the application state that is to be stored in theuip connstructure.

Functions

• void smtpdone(unsigned char error)

Callback function that is called when an e-mail transmission is done.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

7.10 apps/smtp/smtp.h File Reference 99

• void smtpconfigure(char∗localhostname,u16 t ∗smtpserver)

Specificy an SMTP server and hostname.

• unsigned charsmtpsend(char∗to, char∗from, char∗subject, char∗msg,u16 t msglen)

Send an e-mail.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

100 uIP 0.9 File Documentation

7.11 apps/telnetd/memb.c File Reference

7.11.1 Detailed Description

Memory block allocation routines.

Author:
Adam Dunkels<adam@sics.se >

The memory block allocation routines provide a simple yet powerful set of functions for managing a set
of memory blocks of fixed size. A set of memory blocks is statically declared with theMEMB() macro.
Memory blocks are allocated from the declared memory by thememballoc() function, and are deallocated
with themembfree()function.

Note:
Because of namespace clashes only oneMEMB() can be declared per C module, and the name scope
of aMEMB() memory block is local to each C module.

The following example shows how to declare and use a memory block called ”cmem” which has 8 chunks
of memory with each memory chunk being 20 bytes large.

MEMB(cmem, 20, 8);

int main(int argc, char *argv[]) {
char *ptr;

memb_init(&cmem);

ptr = memb_alloc(&cmem);

if(ptr != NULL) {
do_something(ptr);

} else {
printf("Could not allocate memory.\n");

}

if(memb_free(ptr) == 0) {
printf("Deallocation succeeded.\n");

}
}

#include <string.h >

#include "memb.h"

Include dependency graph for memb.c:

memb.c

string.h memb.h

Functions

• void membinit (struct membblocks∗m)

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@sics.se

7.11 apps/telnetd/memb.c File Reference 101

Initialize a memory block that was declared withMEMB().

• char∗ memballoc (struct membblocks∗m)

Allocate a memory block from a block of memory declared withMEMB().

• charmembfree(struct membblocks∗m, char∗ptr)

Deallocate a memory block from a memory block previously declared withMEMB().

• charmembref (struct membblocks∗m, char∗ptr)

Increase the reference count for a memory chunk.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

102 uIP 0.9 File Documentation

7.12 apps/telnetd/memb.h File Reference

7.12.1 Detailed Description

Memory block allocation routines.

Author:
Adam Dunkels<adam@sics.se >

This graph shows which files directly or indirectly include this file:

memb.h

telnetd.c memb.c

Defines

• #defineMEMB(name, size, num)

Declare a memory block.

Functions

• void membinit (struct membblocks∗m)

Initialize a memory block that was declared withMEMB().

• char∗ memballoc (struct membblocks∗m)

Allocate a memory block from a block of memory declared withMEMB().

• charmembref (struct membblocks∗m, char∗ptr)

Increase the reference count for a memory chunk.

• charmembfree(struct membblocks∗m, char∗ptr)

Deallocate a memory block from a memory block previously declared withMEMB().

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@sics.se

7.13 apps/telnetd/telnetd-shell.c File Reference 103

7.13 apps/telnetd/telnetd-shell.c File Reference

7.13.1 Detailed Description

An example telnet server shell.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

#include "telnetd.h"

#include <string.h >

Include dependency graph for telnetd-shell.c:

telnetd-shell.c

uip.h

telnetd.h

uipopt.h

httpd.h

string.h

Functions

• void telnetdconnected(structtelnetdstate∗s)

Callback function that is called when a telnet connection has been established.

• void telnetdinput (structtelnetdstate∗s, char∗cmd)

Callback function that is called when a line of text has arrived on a telnet connection.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

104 uIP 0.9 File Documentation

7.14 apps/telnetd/telnetd.c File Reference

7.14.1 Detailed Description

Implementation of the Telnet server.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

#include "memb.h"

#include "telnetd.h"

#include <string.h >

Include dependency graph for telnetd.c:

telnetd.c

uip.h

telnetd.h

uipopt.h

httpd.h

memb.h string.h

Functions

• void telnetdclose(structtelnetdstate∗s)

Close a telnet session.

• void telnetdprompt(structtelnetdstate∗s, char∗str)

Print a prompt on a telnet connection.

• void telnetdoutput(structtelnetdstate∗s, char∗str1, char∗str2)

Print out a string on a telnet connection.

• void telnetdinit (void)

Initialize the telnet server.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

7.15 apps/telnetd/telnetd.h File Reference 105

7.15 apps/telnetd/telnetd.h File Reference

7.15.1 Detailed Description

Header file for the telnet server.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

Include dependency graph for telnetd.h:

telnetd.h

uip.h

uipopt.h

httpd.h

This graph shows which files directly or indirectly include this file:

telnetd.h

telnetd.c telnetd-shell.c

Data Structures

• structtelnetdstate

A telnet connection structure.

Defines

• #defineTELNETD LINELEN

The maximum length of a telnet line.

• #defineTELNETD NUMLINES

The number of output lines being buffered for all telnet connections.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

106 uIP 0.9 File Documentation

Functions

• void telnetdconnected(structtelnetdstate∗s)

Callback function that is called when a telnet connection has been established.

• void telnetdinput (structtelnetdstate∗s, char∗cmd)

Callback function that is called when a line of text has arrived on a telnet connection.

• void telnetdclose(structtelnetdstate∗s)

Close a telnet session.

• void telnetdoutput(structtelnetdstate∗s, char∗s1, char∗s2)

Print out a string on a telnet connection.

• void telnetdprompt(structtelnetdstate∗s, char∗str)

Print a prompt on a telnet connection.

• void telnetdinit (void)

Initialize the telnet server.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

7.16 apps/webclient/webclient.c File Reference 107

7.16 apps/webclient/webclient.c File Reference

7.16.1 Detailed Description

Implementation of the HTTP client.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

#include "webclient.h"

#include "resolv.h"

#include <string.h >

Include dependency graph for webclient.c:

webclient.c

uip.h

resolv.h

uipopt.h

httpd.h

webclient.h

http-strings.h http-user-agent-string.h

string.h

Functions

• char∗ webclientmimetype(void)

Obtain the MIME type of the current HTTP data stream.

• char∗ webclientfilename(void)

Obtain the filename of the current HTTP data stream.

• char∗ webclienthostname(void)

Obtain the hostname of the current HTTP data stream.

• unsigned shortwebclientport (void)

Obtain the port number of the current HTTP data stream.

• void webclientinit (void)

Initialize the webclient module.

• void webclientclose(void)

Close the currently open HTTP connection.

• unsigned charwebclientget(char∗host,u16 t port, char∗file)

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

108 uIP 0.9 File Documentation

Open an HTTP connection to a web server and ask for a file using the GET method.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

7.17 apps/webclient/webclient.h File Reference 109

7.17 apps/webclient/webclient.h File Reference

7.17.1 Detailed Description

Header file for the HTTP client.

Author:
Adam Dunkels<adam@dunkels.com >

#include "http-strings.h"

#include "http-user-agent-string.h"

Include dependency graph for webclient.h:

webclient.h

http-strings.h http-user-agent-string.h

This graph shows which files directly or indirectly include this file:

webclient.h

webclient.c

Functions

• void webclientdatahandler(char∗data,u16 t len)

Callback function that is called from the webclient code when HTTP data has been received.

• void webclientconnected(void)

Callback function that is called from the webclient code when the HTTP connection has been connected to
the web server.

• void webclienttimedout(void)

Callback function that is called from the webclient code if the HTTP connection to the web server has timed
out.

• void webclientaborted(void)

Callback function that is called from the webclient code if the HTTP connection to the web server has been
aborted by the web server.

• void webclientclosed(void)

Callback function that is called from the webclient code when the HTTP connection to the web server has
been closed.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

110 uIP 0.9 File Documentation

• void webclientinit (void)

Initialize the webclient module.

• unsigned charwebclientget(char∗host,u16 t port, char∗file)

Open an HTTP connection to a web server and ask for a file using the GET method.

• void webclientclose(void)

Close the currently open HTTP connection.

• char∗ webclientmimetype(void)

Obtain the MIME type of the current HTTP data stream.

• char∗ webclientfilename(void)

Obtain the filename of the current HTTP data stream.

• char∗ webclienthostname(void)

Obtain the hostname of the current HTTP data stream.

• unsigned shortwebclientport (void)

Obtain the port number of the current HTTP data stream.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

7.18 uip/slipdev.c File Reference 111

7.18 uip/slipdev.c File Reference

7.18.1 Detailed Description

SLIP protocol implementation.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

Include dependency graph for slipdev.c:

slipdev.c

uip.h

uipopt.h

httpd.h

Functions

• void slipdevsend(void)

Send the packet in the uipbuf and uipappdata buffers using the SLIP protocol.

• u16 t slipdevpoll (void)

Poll the SLIP device for an available packet.

• void slipdev init (void)

Initialize the SLIP module.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

112 uIP 0.9 File Documentation

7.19 uip/slipdev.h File Reference

7.19.1 Detailed Description

SLIP header file.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

Include dependency graph for slipdev.h:

slipdev.h

uip.h

uipopt.h

httpd.h

Functions

• void slipdevcharput (u8 t c)

Put a character on the serial device.

• u8 t slipdevcharpoll (u8 t ∗c)

Poll the serial device for a character.

• void slipdev init (void)

Initialize the SLIP module.

• void slipdevsend(void)

Send the packet in the uipbuf and uipappdata buffers using the SLIP protocol.

• u16 t slipdevpoll (void)

Poll the SLIP device for an available packet.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

7.20 uip/uip.c File Reference 113

7.20 uip/uip.c File Reference

7.20.1 Detailed Description

The uIP TCP/IP stack code.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

#include "uipopt.h"

#include "uip arch.h"

Include dependency graph for uip.c:

uip.c

uip.h

uip_arch.h

uipopt.h

httpd.h

Functions

• void uip init (void)

uIP initialization function.

• uip udp conn∗ uip udp new(u16 t ∗ripaddr,u16 t rport)

Set up a new UDP connection.

• void uip unlisten(u16 t port)

Stop listening to the specified port.

• void uip listen(u16 t port)

Start listening to the specified port.

• u16 t htons(u16 t val)

Convert 16-bit quantity from host byte order to network byte order.

Variables

• u8 t uip buf [UIP BUFSIZE+2]

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

114 uIP 0.9 File Documentation

The uIP packet buffer.

• volatileu8 t ∗ uip appdata

Pointer to the application data in the packet buffer.

• volatileu8 t uip acc32[4]

4-byte array used for the 32-bit sequence number calculations.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

7.21 uip/uip.h File Reference 115

7.21 uip/uip.h File Reference

7.21.1 Detailed Description

Header file for the uIP TCP/IP stack.

Author:
Adam Dunkels<adam@dunkels.com >

The uIP TCP/IP stack header file contains definitions for a number of C macros that are used by uIP
programs as well as internal uIP structures, TCP/IP header structures and function declarations.

#include "uipopt.h"

Include dependency graph for uip.h:

uip.h

uipopt.h

httpd.h

This graph shows which files directly or indirectly include this file:

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

116 uIP 0.9 File Documentation

uip.h

uip.c

uip_arch.h

uip_arp.h

slipdev.h

slipdev.c

webclient.c

resolv.h

smtp.c

telnetd.h

telnetd.c

telnetd-shell.c

httpd.c

fs.h
cgi.c

fs.c

Data Structures

• structuip conn

Representation of a uIP TCP connection.

• structuip stats

The structure holding the TCP/IP statistics that are gathered if UIPSTATISTICS is set to 1.

• structuip udp conn

Representation of a uIP UDP connection.

Defines

• #defineuip sethostaddr(addr)

Set the IP address of this host.

• #defineuip gethostaddr(addr)

Get the IP address of this host.

• #defineuip input()

Process an incoming packet.

• #defineuip periodic(conn)

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

7.21 uip/uip.h File Reference 117

Periodic processing for a connection identified by its number.

• #defineuip periodicconn(conn)

Periodic processing for a connection identified by a pointer to its structure.

• #defineuip udp periodic(conn)

Periodic processing for a UDP connection identified by its number.

• #defineuip udp periodicconn(conn)

Periodic processing for a UDP connection identified by a pointer to its structure.

• #defineuip send(data, len)

Send data on the current connection.

• #defineuip datalen()

The length of any incoming data that is currently avaliable (if avaliable) in the uipappdata buffer.

• #defineuip urgdatalen()

The length of any out-of-band data (urgent data) that has arrived on the connection.

• #defineuip close()

Close the current connection.

• #defineuip abort()

Abort the current connection.

• #defineuip stop()

Tell the sending host to stop sending data.

• #defineuip stopped(conn)

Find out if the current connection has been previously stopped withuip stop().

• #defineuip restart()

Restart the current connection, if is has previously been stopped withuip stop().

• #defineuip newdata()

Is new incoming data available?

• #defineuip acked()

Has previously sent data been acknowledged?

• #defineuip connected()

Has the connection just been connected?

• #defineuip closed()

Has the connection been closed by the other end?

• #defineuip aborted()

Has the connection been aborted by the other end?

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

118 uIP 0.9 File Documentation

• #defineuip timedout()

Has the connection timed out?

• #defineuip rexmit()

Do we need to retransmit previously data?

• #defineuip poll()

Is the connection being polled by uIP?

• #defineuip initialmss()

Get the initial maxium segment size (MSS) of the current connection.

• #defineuip mss()

Get the current maxium segment size that can be sent on the current connection.

• #defineuip udp remove(conn)

Removed a UDP connection.

• #defineuip udp send(len)

Send a UDP datagram of length len on the current connection.

• #defineuip ipaddr(addr, addr0, addr1, addr2, addr3)

Pack an IP address into a 4-byte array which is used by uIP to represent IP addresses.

• #defineHTONS(n)

Convert 16-bit quantity from host byte order to network byte order.

Functions

• void uip init (void)

uIP initialization function.

• void uip listen(u16 t port)

Start listening to the specified port.

• void uip unlisten(u16 t port)

Stop listening to the specified port.

• uip conn∗ uip connect(u16 t ∗ripaddr,u16 t port)

Connect to a remote host using TCP.

• uip udp conn∗ uip udp new(u16 t ∗ripaddr,u16 t rport)

Set up a new UDP connection.

• u16 t htons(u16 t val)

Convert 16-bit quantity from host byte order to network byte order.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

7.21 uip/uip.h File Reference 119

Variables

• u8 t uip buf [UIP BUFSIZE+2]

The uIP packet buffer.

• volatileu8 t ∗ uip appdata

Pointer to the application data in the packet buffer.

• volatileu8 t uip acc32[4]

4-byte array used for the 32-bit sequence number calculations.

• uip statsuip stat

The uIP TCP/IP statistics.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

120 uIP 0.9 File Documentation

7.22 uip/uip arch.h File Reference

7.22.1 Detailed Description

Declarations of architecture specific functions.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

Include dependency graph for uiparch.h:

uip_arch.h

uip.h

uipopt.h

httpd.h

This graph shows which files directly or indirectly include this file:

uip_arch.h

uip.c

Functions

• void uip add32(u8 t ∗op32,u16 t op16)

Carry out a 32-bit addition.

• u16 t uip chksum(u16 t ∗buf, u16 t len)

Calculate the Internet checksum over a buffer.

• u16 t uip ipchksum(void)

Calculate the IP header checksum of the packet header in uipbuf.

• u16 t uip tcpchksum(void)

Calculate the TCP checksum of the packet in uipbuf and uipappdata.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

7.23 uip/uip arp.c File Reference 121

7.23 uip/uip arp.c File Reference

7.23.1 Detailed Description

Implementation of the ARP Address Resolution Protocol.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip arp.h"

#include <string.h >

Include dependency graph for uiparp.c:

uip_arp.c

uip_arp.h

uip.h

uipopt.h

httpd.h

string.h

Functions

• void uip arp init (void)

Initialize the ARP module.

• void uip arp timer (void)

Periodic ARP processing function.

• void uip arp ipin (void)

ARP processing for incoming IP packets.

• void uip arp arpin(void)

ARP processing for incoming ARP packets.

• void uip arp out (void)

Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

122 uIP 0.9 File Documentation

7.24 uip/uip arp.h File Reference

7.24.1 Detailed Description

Macros and definitions for the ARP module.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

Include dependency graph for uiparp.h:

uip_arp.h

uip.h

uipopt.h

httpd.h

This graph shows which files directly or indirectly include this file:

uip_arp.h

uip_arp.c

Data Structures

• structuip eth addr

Representation of a 48-bit Ethernet address.

• structuip eth hdr

The Ethernet header.

Defines

• #defineuip setdraddr(addr)

Set the default router’s IP address.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

7.24 uip/uip arp.h File Reference 123

• #defineuip setnetmask(addr)

Set the netmask.

• #defineuip getdraddr(addr)

Get the default router’s IP address.

• #defineuip getnetmask(addr)

Get the netmask.

• #defineuip setethaddr(eaddr)

Specifiy the Ethernet MAC address.

Functions

• void uip arp init (void)

Initialize the ARP module.

• void uip arp ipin (void)

ARP processing for incoming IP packets.

• void uip arp arpin(void)

ARP processing for incoming ARP packets.

• void uip arp out (void)

Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

• void uip arp timer (void)

Periodic ARP processing function.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

124 uIP 0.9 File Documentation

7.25 unix/uipopt.h File Reference

7.25.1 Detailed Description

Configuration options for uIP.

Author:
Adam Dunkels<adam@dunkels.com >

This file is used for tweaking various configuration options for uIP. You should make a copy of this file
into one of your project’s directories instead of editing this example ”uipopt.h” file that comes with the uIP
distribution.

#include "httpd.h"

Include dependency graph for uipopt.h:

uipopt.h

httpd.h

This graph shows which files directly or indirectly include this file:

uipopt.h

uip.h

uip.c

smtp.h

Defines

• #defineUIP FIXEDADDR

Determines if uIP should use a fixed IP address or not.

• #defineUIP PINGADDRCONF

Ping IP address asignment.

• #defineUIP IPADDR0

The first octet of the IP address of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP IPADDR1

The second octet of the IP address of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP IPADDR2

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

mailto:adam@dunkels.com

7.25 unix/uipopt.h File Reference 125

The third octet of the IP address of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP IPADDR3

The fourth octet of the IP address of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP NETMASK0

The first octet of the netmask of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP NETMASK1

The second octet of the netmask of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP NETMASK2

The third octet of the netmask of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP NETMASK3

The fourth octet of the netmask of this uIP node, if UIPFIXEDADDR is 1.

• #defineUIP DRIPADDR0

The first octet of the IP address of the default router, if UIPFIXEDADDR is 1.

• #defineUIP DRIPADDR1

The second octet of the IP address of the default router, if UIPFIXEDADDR is 1.

• #defineUIP DRIPADDR2

The third octet of the IP address of the default router, if UIPFIXEDADDR is 1.

• #defineUIP DRIPADDR3

The fourth octet of the IP address of the default router, if UIPFIXEDADDR is 1.

• #defineUIP FIXEDETHADDR

Specifies if the uIP ARP module should be compiled with a fixed Ethernet MAC address or not.

• #defineUIP ETHADDR0

The first octet of the Ethernet address if UIPFIXEDETHADDR is 1.

• #defineUIP ETHADDR1

The second octet of the Ethernet address if UIPFIXEDETHADDR is 1.

• #defineUIP ETHADDR2

The third octet of the Ethernet address if UIPFIXEDETHADDR is 1.

• #defineUIP ETHADDR3

The fourth octet of the Ethernet address if UIPFIXEDETHADDR is 1.

• #defineUIP ETHADDR4

The fifth octet of the Ethernet address if UIPFIXEDETHADDR is 1.

• #defineUIP ETHADDR5

The sixth octet of the Ethernet address if UIPFIXEDETHADDR is 1.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

126 uIP 0.9 File Documentation

• #defineUIP TTL 255

The IP TTL (time to live) of IP packets sent by uIP.

• #defineUIP REASSEMBLY

Turn on support for IP packet reassembly.

• #defineUIP REASSMAXAGE 40

The maximum time an IP fragment should wait in the reassembly buffer before it is dropped.

• #defineUIP UDP

Toggles wether UDP support should be compiled in or not.

• #defineUIP UDP CHECKSUMS

Toggles if UDP checksums should be used or not.

• #defineUIP UDP CONNS

The maximum amount of concurrent UDP connections.

• #defineUIP UDP APPCALL

The name of the function that should be called when UDP datagrams arrive.

• #defineUIP ACTIVE OPEN

Determines if support for opening connections from uIP should be compiled in.

• #defineUIP CONNS

The maximum number of simultaneously open TCP connections.

• #defineUIP LISTENPORTS

The maximum number of simultaneously listening TCP ports.

• #defineUIP RECEIVE WINDOW

The size of the advertised receiver’s window.

• #defineUIP URGDATA

Determines if support for TCP urgent data notification should be compiled in.

• #defineUIP RTO 3

The initial retransmission timeout counted in timer pulses.

• #defineUIP MAXRTX 8

The maximum number of times a segment should be retransmitted before the connection should be aborted.

• #defineUIP MAXSYNRTX 3

The maximum number of times a SYN segment should be retransmitted before a connection request should
be deemed to have been unsuccessful.

• #defineUIP TCP MSS(UIP BUFSIZE - UIPLLH LEN - 40)

The TCP maximum segment size.

• #defineUIP TIME WAIT TIMEOUT 120

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

7.25 unix/uipopt.h File Reference 127

How long a connection should stay in the TIMEWAIT state.

• #defineUIP ARPTAB SIZE

The size of the ARP table.

• #defineUIP ARP MAXAGE 120

The maxium age of ARP table entries measured in 10ths of seconds.

• #defineUIP BUFSIZE

The size of the uIP packet buffer.

• #defineUIP STATISTICS

Determines if statistics support should be compiled in.

• #defineUIP LOGGING

Determines if logging of certain events should be compiled in.

• #defineUIP LLH LEN

The link level header length.

• #defineBYTE ORDER

The byte order of the CPU architecture on which uIP is to be run.

Typedefs

• typedef unsigned charu8 t

The 8-bit unsigned data type.

• typedef unsigned shortu16 t

The 16-bit unsigned data type.

• typedef unsigned shortuip statst

The statistics data type.

Functions

• void uip log (char∗msg)

Print out a uIP log message.

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

Index

ackerr
uip stats,84

Appication specific configurations,62
apps/httpd/cgi.c,87
apps/httpd/cgi.h,89
apps/httpd/fs.c,90
apps/httpd/fs.h,91
apps/httpd/httpd.c,92
apps/httpd/httpd.h,93
apps/resolv/resolv.c,94
apps/resolv/resolv.h,95
apps/smtp/smtp.c,97
apps/smtp/smtp.h,98
apps/telnetd/memb.c,100
apps/telnetd/memb.h,102
apps/telnetd/telnetd-shell.c,103
apps/telnetd/telnetd.c,104
apps/telnetd/telnetd.h,105
apps/webclient/webclient.c,107
apps/webclient/webclient.h,109
Architecture specific uIP functions,43
ARP configuration options,58

BYTE ORDER
uipoptcpu,61

chkerr
uip stats,84

Configuration options for uIP,49
CPU architecture configuration,61

drop
uip stats,84

Example applications,25
exampleapps

MEMB, 26
memballoc,26
membfree,26
membinit, 26
membref, 26

fragerr
uip stats,84

fs file, 77
fs open

httpd,73

General configuration options,59

hblenerr
uip stats,84

HTONS
uipconvfunc,41

htons
uip, 22
uipconvfunc,42

httpd
fs open,73
httpd init, 73

httpd init
httpd,73

IP configuration options,54

lblenerr
uip stats,84

MEMB
exampleapps,26

memballoc
exampleapps,26

membfree
exampleapps,26

membinit
exampleapps,26

membref
exampleapps,26

protoerr
uip stats,84

recv
uip stats,84

resolvconf
uipdns,74

resolv found
uipdns,75

resolvgetserver
uipdns,75

resolv lookup
uipdns,75

INDEX 129

resolvquery
uipdns,75

rexmit
uip stats,84

rst
uip stats,84

sent
uip stats,84

Serial Line IP (SLIP) protocol,47
slip

slipdevcharpoll, 47
slipdevcharput,48
slipdev init, 48
slipdevpoll, 48
slipdevsend,48

slipdevcharpoll
slip, 47

slipdevcharput
slip, 48

slipdev init
slip, 48

slipdevpoll
slip, 48

slipdevsend
slip, 48

smtp
smtpconfigure,67
smtpdone,67
smtpsend,68

SMTP E-mail sender,67
smtpconfigure

smtp,67
smtpdone

smtp,67
smtpsend

smtp,68
Static configuration options,51
syndrop

uip stats,84
synrst

uip stats,85

TCP configuration options,56
Telnet server,69
telnetd

telnetdclose,70
telnetdconnected,70
telnetdinit, 70
telnetdinput,70
telnetdoutput,71
telnetdprompt,71

telnetdclose
telnetd,70

telnetdconnected
telnetd,70

telnetdinit
telnetd,70

telnetdinput
telnetd,70

telnetdoutput
telnetd,71

telnetdprompt
telnetd,71

telnetdstate,78
The uIP TCP/IP stack,21
typeerr

uip stats,85

u16 t
uipopttypedef,50

u8 t
uipopttypedef,50

UDP configuration options,55
uip

htons,22
uip appdata,23
uip buf, 23
uip init, 22
uip listen,22
uip stat,24
uip udp new,23
uip unlisten,23

uIP Address Resolution Protocol,45
uIP application functions,35
uIP configuration functions,28
uIP conversion functions,41
uIP device driver functions,31
uIP hostname resolver functions,74
uIP initialization functions,30
uIP type definitions,50
uip/slipdev.c,111
uip/slipdev.h,112
uip/uip.c,113
uip/uip.h,115
uip/uip arch.h,120
uip/uip arp.c,121
uip/uip arp.h,122
uip abort

uipappfunc,36
uip aborted

uipappfunc,36
uip acked

uipappfunc,36
UIP ACTIVE OPEN

uipopttcp,56
uip add32

uiparch,43

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

130 INDEX

uip appdata
uip, 23

uip arp arpin
uiparp,46

uip arp ipin
uiparp,46

UIP ARP MAXAGE
uipoptarp,58

uip arp out
uiparp,46

uip arp timer
uiparp,46

UIP ARPTAB SIZE
uipoptarp,58

uip buf
uip, 23
uipdevfunc,33

UIP BUFSIZE
uipoptgeneral,59

uip chksum
uiparch,44

uip close
uipappfunc,37

uip closed
uipappfunc,37

uip conn,79
uip connect

uipappfunc,39
uip connected

uipappfunc,37
UIP CONNS

uipopttcp,56
uip datalen

uipappfunc,37
uip eth addr,81
uip eth hdr,82
UIP FIXEDADDR

uipoptstaticconf,52
UIP FIXEDETHADDR

uipoptstaticconf,52
uip getdraddr

uipconffunc,28
uip gethostaddr

uipconffunc,28
uip getnetmask

uipconffunc,28
uip init

uip, 22
uipinit, 30

uip input
uipdevfunc,31

uip ipaddr
uipconvfunc,41

uip ipchksum

uiparch,44
uip listen

uip, 22
uipappfunc,39

UIP LISTENPORTS
uipopttcp,56

UIP LLH LEN
uipoptgeneral,59

uip log
uipoptgeneral,60

UIP LOGGING
uipoptgeneral,59

UIP MAXRTX
uipopttcp,57

UIP MAXSYNRTX
uipopttcp,57

uip mss
uipappfunc,37

uip newdata
uipappfunc,37

uip periodic
uipdevfunc,32

uip periodicconn
uipdevfunc,32

UIP PINGADDRCONF
uipoptstaticconf,52

uip poll
uipappfunc,37

UIP REASSEMBLY
uipoptip,54

UIP RECEIVE WINDOW
uipopttcp,57

uip restart
uipappfunc,38

uip rexmit
uipappfunc,38

UIP RTO
uipopttcp,57

uip send
uipappfunc,38

uip setdraddr
uipconffunc,29

uip setethaddr
uipconffunc,29

uip sethostaddr
uipconffunc,29

uip setnetmask
uipconffunc,29

uip stat
uip, 24

UIP STATISTICS
uipoptgeneral,59

uip stats,83
ackerr,84

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

INDEX 131

chkerr,84
drop,84
fragerr,84
hblenerr,84
lblenerr,84
protoerr,84
recv,84
rexmit,84
rst,84
sent,84
syndrop,84
synrst,85
typeerr,85
vhlerr,85

uip statst
uipopttypedef,50

uip stop
uipappfunc,38

UIP TCP MSS
uipopttcp,57

uip tcpchksum
uiparch,44

UIP TIME WAIT TIMEOUT
uipopttcp,57

uip timedout
uipappfunc,38

UIP TTL
uipoptip,54

UIP UDP CHECKSUMS
uipoptudp,55

uip udp conn,86
uip udp new

uip, 23
uipappfunc,40

uip udp periodic
uipdevfunc,33

uip udp periodicconn
uipdevfunc,33

uip udp remove
uipappfunc,38

uip udp send
uipappfunc,39

uip unlisten
uip, 23
uipappfunc,40

UIP URGDATA
uipopttcp,57

uip urgdatalen
uipappfunc,39

uipappfunc
uip abort,36
uip aborted,36
uip acked,36
uip close,37

uip closed,37
uip connect,39
uip connected,37
uip datalen,37
uip listen,39
uip mss,37
uip newdata,37
uip poll, 37
uip restart,38
uip rexmit,38
uip send,38
uip stop,38
uip timedout,38
uip udp new,40
uip udp remove,38
uip udp send,39
uip unlisten,40
uip urgdatalen,39

uiparch
uip add32,43
uip chksum,44
uip ipchksum,44
uip tcpchksum,44

uiparp
uip arp arpin,46
uip arp ipin, 46
uip arp out,46
uip arp timer,46

uipconffunc
uip getdraddr,28
uip gethostaddr,28
uip getnetmask,28
uip setdraddr,29
uip setethaddr,29
uip sethostaddr,29
uip setnetmask,29

uipconvfunc
HTONS,41
htons,42
uip ipaddr,41

uipdevfunc
uip buf, 33
uip input,31
uip periodic,32
uip periodicconn,32
uip udp periodic,33
uip udp periodicconn,33

uipdns
resolvconf,74
resolv found,75
resolvgetserver,75
resolv lookup,75
resolvquery,75

uipinit

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

132 INDEX

uip init, 30
uipoptarp

UIP ARP MAXAGE, 58
UIP ARPTAB SIZE,58

uipoptcpu
BYTE ORDER,61

uipoptgeneral
UIP BUFSIZE,59
UIP LLH LEN, 59
uip log, 60
UIP LOGGING,59
UIP STATISTICS,59

uipoptip
UIP REASSEMBLY,54
UIP TTL, 54

uipoptstaticconf
UIP FIXEDADDR, 52
UIP FIXEDETHADDR, 52
UIP PINGADDRCONF,52

uipopttcp
UIP ACTIVE OPEN,56
UIP CONNS,56
UIP LISTENPORTS,56
UIP MAXRTX, 57
UIP MAXSYNRTX, 57
UIP RECEIVE WINDOW, 57
UIP RTO,57
UIP TCP MSS,57
UIP TIME WAIT TIMEOUT, 57
UIP URGDATA, 57

uipopttypedef
u16 t, 50
u8 t, 50
uip statst, 50

uipoptudp
UIP UDP CHECKSUMS,55

unix/uipopt.h,124

vhlerr
uip stats,85

Web client,63
Web server,72
webclient

webclientaborted,64
webclientclosed,64
webclientconnected,64
webclientdatahandler,64
webclientfilename,64
webclientget,65
webclienthostname,65
webclientmimetype,66
webclientport,66
webclienttimedout,66

webclientaborted
webclient,64

webclientclosed
webclient,64

webclientconnected
webclient,64

webclientdatahandler
webclient,64

webclientfilename
webclient,64

webclientget
webclient,65

webclienthostname
webclient,65

webclientmimetype
webclient,66

webclientport
webclient,66

webclienttimedout
webclient,66

Generated on Tue Oct 7 15:51:52 2003 for uIP 0.9 by Doxygen

	The uIP TCP/IP stack
	uIP introduction
	TCP/IP communication
	Memory management
	Application program interface (API)
	uIP device drivers
	Architecture specific functions
	Examples

	uIP 0.9 Module Index
	uIP 0.9 Modules

	uIP 0.9 Data Structure Index
	uIP 0.9 Data Structures

	uIP 0.9 File Index
	uIP 0.9 File List

	uIP 0.9 Module Documentation
	The uIP TCP/IP stack
	Example applications
	uIP configuration functions
	uIP initialization functions
	uIP device driver functions
	uIP application functions
	uIP conversion functions
	Architecture specific uIP functions
	uIP Address Resolution Protocol
	Serial Line IP (SLIP) protocol
	Configuration options for uIP
	uIP type definitions
	Static configuration options
	IP configuration options
	UDP configuration options
	TCP configuration options
	ARP configuration options
	General configuration options
	CPU architecture configuration
	Appication specific configurations
	Web client
	SMTP E-mail sender
	Telnet server
	Web server
	uIP hostname resolver functions

	uIP 0.9 Data Structure Documentation
	fs_file Struct Reference
	telnetd_state Struct Reference
	uip_conn Struct Reference
	uip_eth_addr Struct Reference
	uip_eth_hdr Struct Reference
	uip_stats Struct Reference
	uip_udp_conn Struct Reference

	uIP 0.9 File Documentation
	apps/httpd/cgi.c File Reference
	apps/httpd/cgi.h File Reference
	apps/httpd/fs.c File Reference
	apps/httpd/fs.h File Reference
	apps/httpd/httpd.c File Reference
	apps/httpd/httpd.h File Reference
	apps/resolv/resolv.c File Reference
	apps/resolv/resolv.h File Reference
	apps/smtp/smtp.c File Reference
	apps/smtp/smtp.h File Reference
	apps/telnetd/memb.c File Reference
	apps/telnetd/memb.h File Reference
	apps/telnetd/telnetd-shell.c File Reference
	apps/telnetd/telnetd.c File Reference
	apps/telnetd/telnetd.h File Reference
	apps/webclient/webclient.c File Reference
	apps/webclient/webclient.h File Reference
	uip/slipdev.c File Reference
	uip/slipdev.h File Reference
	uip/uip.c File Reference
	uip/uip.h File Reference
	uip/uip_arch.h File Reference
	uip/uip_arp.c File Reference
	uip/uip_arp.h File Reference
	unix/uipopt.h File Reference

